

Columbia Street West Renovation + New Construction

DESIGN COLLABORATIVE

200 E. Main Street Suite 600 Fort Wayne, IN 46802 PH 260-422-4241 FX 260-422-4847

Designcollaborative.com

PROJECT MANUAL Project # 20200136 7/28/2021

Columbia Street West Renovation + New Construction

PROJECT #20200136

PREPARED BY: Design Collaborative 200 East Main Street, Suite 600 Fort Wayne, IN 46802

Timothy N. Terman DESIGN COLLABORATIVE STATE STAMP NUMBER

Mark D. Reinhard ENGINEERING RESOURCES IN-10911278

DRI

Jason B. Baker DESIGN COLLABORATIVE

Daniel J. Schenkel ENGINEERING RESOURCES IN-19700114

Panil J. Schol

TABLE OF CONTENTS

DIVISION 00 - PROCUREMENT AND CONTRACTING REQUIREMENTS

SECTION 00 01 15 - LIST OF DRAWING SHEETS SECTION 00 31 10 - ELECTRONIC DOCUMENTS SECTION 00 31 32 - GEOTECHNICAL DATA

DIVISION 01 - GENERAL REQUIREMENTS

SECTION 01 10 00 - SUMMARY SECTION 01 33 00 - SUBMITTAL PROCEDURES SECTION 01 40 00 - QUALITY REQUIREMENTS SECTION 01 42 00 - REFERENCES SECTION 01 60 00 - PRODUCT REQUIREMENTS SECTION 01 78 23 - OPERATION AND MAINTENANCE DATA SECTION 01 78 39 - PROJECT RECORD DOCUMENTS SECTION 01 79 00 - DEMONSTRATION AND TRAINING

DIVISION 02 - EXISTING CONDITIONS

SECTION 02 41 19 – SELECTIVE DEMOLITION SECTION 02 42 96 – HISTORIC REMOVAL AND DISMANTLING

DIVISION 03 - CONCRETE

SECTION 03 30 00 - CAST-IN-PLACE CONCRETE SECTION 03 35 43 - POLISHED CONCRETE FINISHING SECTION 03 45 00 - PRECAST ARCHITECTURAL CONCRETE

DIVISION 04 - MASONRY

SECTION 04 01 20.63 - BRICK MASONRY REPAIR SECTION 04 01 20.64 - BRICK MASONRY REPOINTING SECTION 04 01 40.61 - STONE REPAIR SECTION 04 01 40.62 - STONE REPOINTING SECTION 04 03 10 - HISTORIC MASONRY CLEANING SECTION 04 20 00 - UNIT MASONRY

DIVISION 05 - METALS

SECTION 05 01 70.51 - DECORATIVE METAL CLEANING SECTION 05 01 70.61 - DECORATIVE METAL REPAIR SECTION 05 12 00 - STRUCTURAL STEEL FRAMING SECTION 05 50 00 - METAL FABRICATIONS SECTION 05 52 13 - PIPE AND TUBE RAILINGS

DIVISION 06 - WOOD, PLASTICS, AND COMPOSITES

SECTION 06 10 00 - ROUGH CARPENTRY SECTION 06 16 00 - SHEATHING SECTION 06 17 53 - SHOP-FABRICATED WOOD TRUSSES SECTION 06 20 13 – EXTERIOR FINISH CARPENTRY SECTION 06 40 13 - EXTERIOR ARCHITECTURAL WOODWORK SECTION 06 40 23 - INTERIOR ARCHITECTURAL WOODWORK

DIVISION 07 - THERMAL AND MOISTURE PROTECTION

SECTION 07 21 00 - THERMAL INSULATION

- SECTION 07 21 19 FOAMED-IN-PLACE INSULATION
- SECTION 07 25 00 WEATHER BARRIERS
- SECTION 07 26 00 UNDER-SLAB VAPOR BARRIER
- SECTION 07 27 26 FLUID-APPLIED MEMBRANE AIR BARRIERS
- SECTION 07 26 00 UNDER-SLAB VAPOR BARRIER
- SECTION 07 41 13.16 STANDING-SEAM METAL ROOF PANELS
- SECTION 07 42 13.13 FORMED METAL WALL PANELS
- SECTION 07 46 46 FIBER-CEMENT SIDING
- SECTION 07 53 23 ETHYLENE-PROPYLENE-DIENE-MONOMER (EPDM) ROOFING
- SECTION 07 62 00 SHEET METAL FLASHING AND TRIM
- SECTION 07 71 00 ROOF SPECIALTIES
- SECTION 07 72 30 RIDGE SOFFIT AND SIDING VENTS
- SECTION 07 84 13 PENETRATION FIRESTOPPING
- SECTION 07 92 00 JOINT SEALANTS
- SECTION 07 95 00 EMSEAL EXTERIOR WALL EXPANSION JOINTS

DIVISION 08 - OPENINGS

SECTION 08 11 13 - HOLLOW METAL DOORS AND FRAMES SECTION 08 14 16 - FLUSH WOOD DOORS SECTION 08 14 33 - STILE AND RAIL WOOD DOORS SECTION 08 31 13 - ACCESS DOORS AND FRAMES SECTION 08 41 13 - ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS SECTION 08 44 13 - GLAZED ALUMINUM CURTAIN WALLS SECTION 08 52 00 - WOOD WINDOWS SECTION 08 53 13 - VINYL WINDOWS SECTION 08 71 00 - DOOR HARDWARE SECTION 08 80 00 - GLAZING

DIVISION 09 - FINISHES

SECTION 09 22 16 - NON-STRUCTURAL METAL FRAMING SECTION 09 29 00 - GYPSUM BOARD SECTION 09 30 13 - CERAMIC TILING SECTION 09 51 13 - ACOUSTICAL PANEL CEILINGS SECTION 09 64 00 - WOOD FLOORING SECTION 09 65 19 - RESILIENT TILE FLOORING SECTION 09 68 13 - TILE CARPETING SECTION 09 91 13 - EXTERIOR PAINTING SECTION 09 91 23 - INTERIOR PAINTING SECTION 09 93 00 - STAINING AND TRANSPARENT FINISHING

DIVISION 10 - SPECIALTIES

SECTION 10 28 00 - TOILET, BATH, AND LAUNDRY ACCESSORIES SECTION 10 44 13 - FIRE PROTECTION CABINETS SECTION 10 44 16 - FIRE EXTINGUISHERS SECTION 10 55 00.13 – USPS-DELIVERY POSTAL SPECIALTIES

DIVISION 11 - EQUIPMENT

NOT APPLICABLE

DIVISION 12 - FURNISHINGS

SECTION 12 21 13 - HORIZONTAL LOUVER BLINDS

DIVISION 13 - SPECIAL CONSTRUCTION

NOT APPLICABLE

DIVISION 14 - CONVEYING EQUIPMENT

NOT APPLICABLE

DIVISION 21 - FIRE SUPPRESSION

SECTION 21 00 00 – COMMON WORK RESULTS FOR FIRE SUPPRESSION SECTION 21 12 00 – FIRE-SUPPRESSION STANDPIPES SECTION 21 13 13 – WET-PIPE FIRE-SUPPRESSION SPRINKLERS

DIVISION 22 - PLUMBING

SECTION 22 05 19 – METERS AND GAGES FOR PLUMBING PIPING SECTION 22 05 23 – GENERAL-DUTY VALVES FOR PLUMBING PIPING SECTION 22 05 53 – IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT SECTION 22 07 19 – PLUMBING PIPING INSULATION SECTION 22 11 16 – DOMESTIC WATER PIPING SECTION 22 11 19 – DOMESTIC WATER PIPING SPECIALTIES SECTION 22 13 16 – SANITARY WASTE AND VENT PIPING SECTION 22 13 19 – SANITARY WASTE PIPING SPECIALTIES SECTION 22 14 13 – STORM DRAINAGE PIPING SECTION 22 14 23 – STORM DRAINAGE PIPING SPECIALTIES SECTION 22 40 00 – PLUMBING FIXTURES

DIVISION 23 - HEATING, VENTILATING, AND AIR-CONDITIONING (HVAC)

SECTION 23 05 53 – IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT SECTION 23 05 93 – TESTING, ADJUSTING, AND BALANCING FOR HVAC SECTION 23 07 13 – DUCT INSULATION SECTION 23 11 23 – FACILITY NATURAL-GAS PIPING

TABLE OF CONTENTS

SECTION 23 23 00 – REFRIFERANT PUPING SECTION 23 31 13 – METAL DUCTS SECTION 23 33 00 – AIR DUCT ACCESSORIES SECTION 23 37 13 – DIFFUSERS, REGISTERS, AND GRILLES SECTION 23 55 30 – SPLIT-SYSTEM HEAT PUMP UNITS SECTION 23 82 39 – UNIT HEATERS

DIVISION 25 - INTEGRATED AUTOMATION

NOT APPLICABLE

DIVISION 26 - ELECTRICAL

SECTION 26 05 19 – LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES SECTION 26 05 26 – GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS SECTION 26 05 29 – HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS SECTION 26 05 33 – RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS SECTION 26 05 44 – SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING SECTION 26 05 53 – IDENTIFICATION FOR ELECTRICAL SYSTEMS SECTION 26 24 16 – PANEL BOARDS SECTION 26 28 16 – ENCLOSED SWITCHES AND CIRCUIT BREAKERS

DIVISION 27 - COMMUNICATIONS

NOT APPLICABLE

DIVISION 28 - ELECTRONIC SAFETY AND SECURITY

SECTION 28 31 11 – DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM

DIVISION 31 - EARTHWORK

SECTION 31 00 00 – CONTROL OF SITE WORK SECTION 31 10 00 – SITE DEMOLITION SECTION 31 20 00 – SITE EARTHWORK

DIVISION 32 - EXTERIOR IMPROVEMENTS

SECTION 32 12 16 – BITUMINOUS CONCRETE PAVEMENT SECTION 32 13 13 – PORTLAND CEMENT CONCRETE PAVEMENT SECTION 32 93 00 – SITE LANDSCAPING

DIVISION 33 - UTILITIES

SECTION 33 05 00 – SITE UTILITY PIPING SECTION 33 11 16 – SITE WATER DISTRIBUTION SECTION 33 31 14 – SANITARY SEWER SYSTEM SECTION 33 41 00 – STORM DRAINAGE SYSTEM

DIVISION 34 - TRANSPORTATION

NOT APPLICABLE

DIVISION 35 - WATERWAY AND MARINE CONSTRUCTION

NOT APPLICABLE

DIVISION 40 - PROCESS INTEGRATION

NOT APPLICABLE

DIVISION 41 - MATERIAL PROCESSING AND HANDLING EQUIPMENT

NOT APPLICABLE

DIVISION 42 - PROCESS HEATING, COOLING, AND DRYING EQUIPMENT

NOT APPLICABLE

DIVISION 43 - PROCESS GAS AND LIQUID HANDLING, PURIFICATION AND STORAGE EQUIPMENT

NOT APPLICABLE

DIVISION 44 - POLLUTION CONTROL EQUIPMENT

NOT APPLICABLE

DIVISION 45 - INDUSTRY-SPECIFIC MANUFACTURING EQUIPMENT

NOT APPLICABLE

DIVISION 46 - WATER AND WASTEWATER EQUIPMENT

NOT APPLICABLE

DIVISION 48 - ELECTRICAL POWER GENERATION

NOT APPLICABLE

SECTION 00 01 15 - LIST OF DRAWING SHEETS

PART 1 - GENERAL LIST OF DRAWINGS

- 1.1 Drawings: Drawings consist of the Contract Drawings and other drawings listed on the Table of Contents page of the separately bound drawing set titled CSW Construction Documents dated 07/28/2021 as modified by subsequent Addenda and Contract modifications.
- 1.2 List of Drawings: Drawings consist of the following Contract Drawings and other drawings of type indicated:

GENERAL

- G0.1 PROJECT COVER SHEET
- G0.2 GENERAL INFORMATION
- G1.1 CODE STUDY & LIFE SAFETY PLANS BUILDING 1
- G1.2 CODE STUDY & LIFE SAFETY PLANS BUILDING 2
- G1.3 CODE STUDY & LIFE SAFETY PLAN BUILDING 3
- G2.1 GENERAL NOTES & PARTITION TYPES
- G2.2 FHA NOTES

CIVIL

- C1.0 SITE DEMOLITION PLAN
- C2.0 SITE LAYOUT PLAN
- C3.0 SITE GRADING PLAN
- C4.0 SITE UTILITY PLAN
- C5.0 SITE DETAILS

STRUCTRUAL

- S0.1 Structural Notes
- S1.1 FOUNDATION PLAN
- S1.2 FOUNDATION DETAILS
- S2.1 SECOND LEVEL FRAMING PLAN
- S2.2 THIRD LEVEL FRAMING PLAN
- S2.3 ROOF FRAMING PLAN
- S3.1 STRUCTURAL DETAILS
- S3.2 STRUCTURAL DETAILS

ARCHITECTURAL

- AR1.1 BUILDING 1 & 2 FLOOR PLAN MAIN LEVEL
- AR1.2 BUILDING 1 & 2 FLOOR PLAN SECOND LEVEL
- AR1.3 BUILDING 1 & 2 FLOOR PLAN THIRD LEVEL
- AR1.0 BUILDING 1 & 2 FLOOR PLAN LOWER LEVEL
- AR2.1 BUILDING 1 & 2 ROOF PLAN
- AR2.2 ROOF DETAILS

LIST OF DRAWING SHEETS

AR4.1 BUILDING 1 & 2 - DEMOLITION & RENOVATION - EXTERIOR ELEVATIONS **AR4.2 BUILDING 1 - ABOVE ROOF EXTERIOR ELEVATIONS** AR4.3 BUILDING 1 & 2 ELEVATON FINISHES AR5.1 BUILDING 1 & 2 - WALL SECTIONS AR7.1 BUILDING 1 & 2 - FRAME ELEVATIONS, SCHEDULES & DETAILS AR9.2 BUILDING 1 & 2 - REFLECTED CEILING PLAN - SECOND LEVEL AR9.1 BUILDING 1 & 2 - REFLECTED CEILING PLANS - MAIN LEVEL AR9.3 BUILDING 1 & 2 - REFLECTED CEILING PLAN - THIRD LEVEL **AR10.1 INTERIOR ELEVATIONS** AR10.2 CASEWORK SECTIONS AR11.1 BUILDING 1 & 2 - FLOOR FINISH PLAN - LOWER & MAIN LEVEL AR11.2 BUILDING 1 & 2 - FLOOR FINISH PLAN - SECOND & THIRD LEVEL AN1.1 BUILDING 3 - FLOOR PLANS & ROOF PLAN AN4.1 BUILDING 3 - EXTERIOR ELEVATIONS & 3D AXONS AN5.0 BUILDING 3 - EXTERIOR WALL ASSEMBLIES AN5.1 BUILDING 3 - WALL SECTIONS AN5.2 BUILDING 3 - WALL SECTIONS AN6.4 BUILDING 3 - PLAN DETAILS AN6.2 BUILDING 3 - ENLARGED DETAILS AN6.1 ENLARGED DETAILS 3"=1'-0" AN7.1 BUILDING 3 - FRAME ELEVATIONS, SCHEDULES & DETAILS AN8.1 BUILDING 3 - STAIR PLANS, SECTIONS, & DETAILS AN9.1 BUILDING 3 - REFLECTED CEILING PLANS AN10.1 INTERIOR ELEVATIONS AN11.1 BUILDING 3 - FLOOR FINISH PLANS

PLUMBING

PD1.01 BUILDING 1 - PLUMBING DEMOLITION PLAN - LOWER LEVEL PD1.11 BUILDING 1 - PLUMBING DEMOLITION PLAN - MAIN LEVEL PD1.12 BUILDING 2 - PLUMBING DEMOLITION PLANS PD1.21 BUILDING 1 - PLUMBING DEMOLITION PLAN - SECOND LEVEL PD1.31 BUILDING 1 - PLUMBING DEMOLITION PLAN - THIRD LEVEL

PR1.0 BUILDING 1 & 2 - PLUMBING PLAN - LOWER LEVEL

PR1.1 BUILDING 1 & 2 - PLUMBING PLAN - MAIN LEVEL

PR1.2 BUILDING 1 & 2 - PLUMBING PLAN - SECOND LEVEL

PR1.3 BUILDING 1 & 2 - PLUMBING PLAN - THIRD LEVEL

PR1.4 BUILDING 1 & 2 - PLUMBING PLAN - ROOF LEVEL

PR3.1 BUILDING 1 & 2 - PLUMBING ISOMETRICS

PN1.1 BUILDING 3 - PLUMBING PLAN - MAIN LEVEL

PN3.1 BUILDING 3 - PLUMBING ISOMETRICS

P4.1 PLUMBING SCHEDULES & DETAILS

MECHANICAL

MD1.01 BUILDING 1 & 2 - MECHANICAL DEMOLITION PLAN - LOWER LEVEL

LIST OF DRAWING SHEETS

MD1.11 BUILDING 1 & 2 - MECHANICAL DEMOLITION PLAN - MAIN LEVEL MD1.21 BUILDING 1 & 2 - MECHANICAL DEMOLITION PLAN - SECOND LEVEL MD1.31 BUILDING 1 & 2 - MECHANICAL DEMOLITION PLAN - THIRD LEVEL

MR1.0 BUILDING 1 & 2 - MECHANICAL PLAN - LOWER LEVEL MR1.1 BUILDING 1 & 2 - MECHANICAL PLAN - MAIN LEVEL MR1.2 BUILDING 1 & 2 - MECHANICAL PLAN - SECOND LEVEL MR1.3 BUILDING 1 & 2 - MECHANICAL PLAN - THIRD LEVEL MR1.4 BUILDING 1 & 2 - MECHANICAL PLAN - ROOF LEVEL

MN1.1 BUILDING 3 - MECHANICAL PLAN - MAIN LEVEL

- M4.1 MECHANICAL SCHEDULES
- M4.2 MECHANICAL DETAILS

ELECTRICAL

ED1.1 BUILDING 1 & 2 - ELECTRICAL DEMOLITION PLAN - LOWER & MAIN LEVEL

ED1.2 BUILDING 1 & 2 - ELECTRICAL DEMOLITION PLAN - SECOND & THIRD LEVEL

- ER1.0 BUILDING 1 & 2 LOWER LEVEL POWER PLAN
- ER1.1 BUILDING 1 & 2 MAIN LEVEL POWER PLAN
- ER1.2 BUILDING 1 & 2 SECOND LEVEL POWER PLAN
- ER1.3 BUILDING 1 & 2 THIRD LEVEL POWER PLAN
- ER1.4 BUILDING 1 & 2 ROOF POWER PLAN
- ER2.0 BUILDING 1 & 2 LOWER LEVEL LIGHTING PLAN
- ER2.1 BUILDING 1 & 2 MAIN LEVEL LIGHTING PLAN
- ER2.2 BUILDING 1 & 2 SECOND LEVEL LIGHTING PLAN
- ER2.3 BUILDING 1 & 2 THIRD LEVEL LIGHTING PLAN
- ER4.2 BUILDING 1 PANEL SHCEDULES
- ER4.3 BUILDING 2 PANEL SCHEDULES
- EN1.1 BUILDING 3 POWER PLAN
- EN2.1 BUILDING 3 LIGHTING PLAN
- EN4.2 BUILDING 3 PANEL SCHEDULES
- E1.0 ELECTRICAL SITE PLAN
- E3.1 ENLARGED ELECTRICAL PLANS
- E4.1 RISER DIAGRAM
- E4.4 ELECTRICAL DETAILS
- E4.5 ELECTRICAL SCHEDULES

END OF SECTION 00 01 15

SECTION 00 31 10 ELECTRONIC DOCUMENTS

PART 1 - GENERAL

1.1 REQUEST FOR ELECTRONIC DOCUMENTS

A. At the request of the successful bidder, the Architect will provide electronic files for convenience and use in the preparation of shop drawings related to this project, subject to the following conditions:

1.2 DISCLAIMER AND WAIVER OF LIABILITY

- A. Electronic files are compatible with AutoCAD Release 2013. The Architect makes no representation as to the compatibility of these files with your hardware or your software beyond the specified release of the referenced specifications.
- B. Data contained on these electronic files are part of the Architect's instruments of service and shall not be used by you or anyone else receiving these data through or from you for any purpose other than as a convenience in preparation of drawings for the referenced project. Any other use or reuse by you or others will be at your sole risk and without liability or legal exposure to the Architect. You agree to make no claim and hereby waive, to the fullest extent permitted by law, any claim or cause of action of any nature against the Architect, their officers, directors, employees, agents or sub contractors that may arise out of connection with your use of the electronic files.
- C. Furthermore, you shall, to the fullest extent permitted by law indemnify and hold the Architect harmless against all damages, liabilities or costs, including reasonable attorneys fees and defense costs, arising out of or resulting from your use of these electronic files.
- D. These electronic files are not construction documents. Differences may exist between these electronic files and corresponding hard-copy construction documents. The Architect makes no representation regarding the accuracy or completeness of the electronic files you receive. In the event that a conflict arises between the signed or sealed hard copy construction documents prepared by the Architect and the electronic files, the signed or sealed hard copy construction documents shall govern. You are responsible for determining if any conflict exists. By your use of these electronic files, you are not relieved of your duty to fully comply with the contract documents, including, without limitation, the need to check , confirm and coordinate all dimensions and details, take field measurements, verify field conditions and coordinate your work with that of other contractors for the project.
- E. Under no circumstance shall delivery of the electronic files for use by you be deemed a sale by the Architect, and the Architect makes no warranties, either express or implied, of merchant ability and fitness for any particular purpose. In no event shall the Architect be held liable for any loss of profit or any consequential damages as a result of your use or reuse of these electronic files.

1.3 COSTS / PROCEDURES FOR REQUEST

- A. In recognition of trends in the design and construction industry primarily the use of Building Information Modeling (BIM) software, and the approach to be more collaborative and uniform from the Design through the Construction process, Design Collaborative recognizes that there is value to the building owner to provide the base model, which was developed as a part of the design process, to the construction team for their use. This is done with the intent that the construction team will continue to develop of the model by adding content and updating the model based on minor changes in the work. As a part of the collaborative use of the model, it is also expected that the construction team will work together to perform clash detection audit with all sub-contractors to resolve all potential conflicts in the layout of; walls, ceilings, duct, pipe, conduit, lights, etc.
- B. The transfer of this model to the contractor will be provided at no cost under the following conditions:
 - 1. Contractor will be provided with one transfer of electronic documents. Multiple requests will be ignored. Requests for model access can be made on the Design Collaborative website and the following direct URL:
 - a. http://www.designcollaborative.com/request-drawings
 - b. Contractor, sub-contractors and suppliers will advance the intelligence / content of the model for two (2) purposes:
 - c. To eliminate conflicts and questions during construction providing a better planned and more efficient construction process.
 - d. To provide the Owner with a more complete and intelligent model for future reference containing information similar but not restricted to the following: equipment model numbers, maintenance schedules and recommendations, pictures of actual installations if applicable, specific design load information, manufacturers modeling information which may be more accurate than what is shown, etc.

PART 2 - PRODUCTS

2.1 (Not Used)

PART 3 - EXECUTION

3.1 (Not Used)

END OF SECTION 00 31 10

SECTION 00 31 32 - GEOTECHNICAL DATA

PART 1 - GENERAL

1.1 SUMMARY

A. Subsurface soil investigations to determine the nature of the soil below the natural grade have been made at various locations on the site.

PART 2 - PRODUCTS

2.1 THE REPORT

2.2 The "Geotechnical Exploration Report from January 4, 2021" is enclosed herein. This report was obtained only for use by the Architects and Engineers in design and is provided to assist to inform bidders of conditions anticipated. To the extent this report contains additional information it is included as a part of the Bidding documents or the Contract Documents

PART 3 - EXECUTION

3.1 USE OF THE REPORT

- A. The boring plan, the summary of test results, and boring logs are made available for information only and are not a warranty of subsurface conditions.
- B. Test borings indicate only the soil conditions at the points where samples were taken and are not intended to indicate the soil conditions for the entire site.
- C. Data on indicated subsurface conditions is not intended as representations or warranties of accuracy or continuity of such soil conditions between soil borings or within a given boring. It is expressly understood that the Owner will not be responsible for interpretations or conclusions drawn therefrom by Bidders.
- D. Upon approval of and coordination with the General Contractor, the Contractor may, at his cost, perform additional borings.
- E. The Bidder shall visit the site and acquaint himself with site conditions.

END OF SECTION 00 31 32

SECTION 00 31 33 - GEOTECHNICAL EXPLORATION REPORT

SUBSURFACE EXPLORATION AND RECOMMENDATIONS

PROPOSED MERCANTILE STORE AND APARTMENTS 619 South Harrison Street Fort Wayne, IN

GME TESTING PROJECT NO. G20-120465

PREPARED FOR:

Design Collaborative, Inc. 200 East Main Street, Suite 600 Fort Wayne, IN 46802 Attn.: Mr. Jeremiah Hatfield, AIA

January 4, 2021

3517 FOCUS DRIVE, FORT WAYNE, INDIANA 46818 • TEL: (260) 497-8127 • 877. 660. 4GME • FAX: (260) 497-0826

Subsurface Exploration • Geotechnical Evaluation • Foundation Engineering • Construction Materials Testing & Monitoring Services <u>www.gmetesting.com</u>

January 4, 2021 G20-120465

Design Collaborative, Inc. 200 East Main Street, Suite 600 Fort Wayne, IN 46802 **Attn.: Mr. Jeremiah Hatfield, AIA**

REF: SUBSURFACE EXPLORATION AND RECOMMENDATIONS Proposed Mercantile Store and Apartments 619 South Harrison Street Fort Wayne, IN

Dear Mr. Hatfield:

In compliance with your request and authorization, *GME Testing* is pleased to submit this report of our subsurface exploration and geotechnical recommendations for the above referenced project. Our work was performed in accordance with our proposal GMEP20-110455 dated November 16, 2020.

1.0 INTRODUCTION

This report includes the results of our geotechnical exploration and evaluation, field and laboratory test data, and recommendations to assist the architects and design engineers in preparing the design and bid documents for the proposed project. The project is located at the southwest corner of the intersection of Columbia Street West and South Harrison Street and include the properties at 617 and 619 South Harrison Street in Fort Wayne, Indiana.

2.0 PURPOSE OF WORK

The purpose of this geotechnical study was to generally characterize the existing subsurface soil and groundwater conditions by drilling two (2) soil test borings, perform laboratory tests on samples recovered from the borings and to provide geotechnical and foundation related recommendations for the proposed project.

3.0 SITE CONDITIONS AND PROJECT DESCRIPTION

3.1 Site Conditions

The following description of site conditions is derived from our site visit in association with the field investigation and our review of publicly available geologic and topographic maps including Allen County GIS, iMap of the site. Based on Allen County iMap dated 1938, a building occupied the site where test borings were drilled.

At the time of our field exploration, the site was occupied by one (1) one-story building that will be demolished. The interior condition and the as-build plans for the existing building were not known. It is not known if the existing building contains a basement, but this aspect should be confirmed by the design team. If a basement is present, it is anticipated that all foundations, utilities, slabs, and associated basement walls will be completely removed during demolition.

The outside condition of the project site was generally flat. The ground cover and land features are consistent with those of typical urban areas including alleys and utility easement, multi-level buildings (some of which containing basements), paved roadways, sidewalks, driveways, and above and below ground utilities, etc.

Existing utilities should be located, identified, and abandoned and/or re-located wherever they are present below proposed construction. This should be done in accordance with the project specifications and good construction practice.

3.2 Project Description

Based on the preliminary information provided to us by Design Collaborative, Inc., it is our understanding that the project will entail the design and construction of up to a 5-story (2,400 sq. ft per floor) over a slab-on-grade (i.e., with no basement), pre-engineered steel framed building intended for mixed-use (apartments and retail space).

No known information relative to the existing nearby structural conditions including performance of the existing foundations, walls, slabs or bearing conditions were available

for review or evaluation by this office. The scope of our investigation did not include ascertaining the conditions of any or all of the existing nearby structural conditions.

Additionally, the contractor should exercise extreme care when making any excavations and/or demolition work adjacent to any of existing buildings that will remain. Underpinning may be required. This determination should be performed by others prior to the onset of construction. However, for the purposes of our report, it is assumed that the existing structures have performed well.

Once the site has been cleared from old generations of building, additional geotechnical evaluation may be required.

The scope of this investigation did not specifically or by implication include an environmental assessment of the site.

3.3 Existing Ground Elevations

Finished floor elevation and grading plans for the proposed project were not known at this time. Based on our review of Allen County iMap website, contour elevation of approximately El. 760 is present on site. It is anticipated that finished floor elevation for ground floor will be established at or slightly above the existing ground surface.

All depths and elevations referred to in this report are referenced from the ground surface existing at the time of this report, unless otherwise stated.

3.4 Structural Loadings

No structural loading information for the proposed building was available at this writing. For the purposes of this report, it is anticipated that the proposed building maximum column, wall and floor loadings will be on the order of approximately 350 kips, 6 kips/linear ft and 100 psf, respectively.

GME Testing should be contacted to review design information that conflicts with our stated understanding of the project.

4.0 SUBSURFACE CONDITIONS

The subsurface conditions were based on drilling two (2) vertical soil test borings for the proposed project and extended to a depth of 25-feet each below the existing ground surface.

The planned locations of the test borings were determined by the client and established in the field by GME Testing. The site plan provided to us by the client was projected onto aerials provided by the Google Earth website allowing for the correlation of the approximate latitude and longitude coordinates with each boring location. These coordinates were then assigned as waypoints and uploaded into a handheld GPS unit. Utilizing the handheld GPS unit, the locations referred to on our boring logs and presented on Figure 1, included in Appendix A of this report. Additional details of field exploration, laboratory testing and geologic conditions are provided in Appendix A of this report.

The lines of demarcation shown on the logs represent approximate boundaries between the various classifications. The stratification of soils, as shown on the accompanying test borehole logs, represents the soil conditions at the drilled borehole locations, and variations may occur between the boreholes. In-situ strata changes could occur gradually or at different levels. Also, it should be noted that the boreholes depict conditions at the particular locations and times indicated.

4.1 Generalized Soil Profile

<u>Surface Materials</u>: Approximately 2-inches of asphalt over concrete fragments were observed on the surface in boring B-1. Whereas boring B-2 disclosed approximately 12-inches of clayey topsoil with fine roots.

<u>Miscellaneous Fill:</u> Fill materials containing clays, concrete, brick, cinders, gravel and limestone products and fine silty sands are present to depths of approximately 8 to 10-feet as shown on the boring logs in Appendix B of this report. The existing fills are heterogeneous. Considering these materials and that the site was previously disturbed, all buried non-soil materials, debris and deleterious materials must be completely removed

under the proposed building footprint and a safe distance laterally as determined by the contractor.

Native Soils: The native materials encountered (below existing miscellaneous fill) consisted of very stiff to hard, sandy silty clays; hard, clayey sandy silts and very dense, sandy silts that extended throughout the terminal depths of the borings. The granular soils disclosed in boring B-1 at and below a depth of approximately 18-feet were saturated indicating wet condition at time of drilling.

The consistencies and relative densities of the encountered soils were based on the Standard Penetration Test, N-values, according to ASTM D-1586.

The foregoing discussions of subsurface conditions on this site represent generalized soil profiles at the test boring locations. A more detailed description and data for each test boring can be found on the individual Borehole Logs in Appendix B of this report.

4.2 Groundwater Conditions

Groundwater measurements were taken during our field operations (by noting the depth of water on the rods), in open boreholes following withdrawal of the drilling augers after the completion of drilling activities in test borings. Groundwater was encountered during or following our drilling program in the borings at or greater than approximately 10-feet as shown on the boring logs included in Appendix B of this report.

The groundwater depths shown on the boring logs reflect groundwater levels for the date which the borings were drilled.

It must be noted, however, that short term groundwater level observations made in test borings are not necessarily a reliable indication of the actual groundwater elevation. Fluctuations in the level of groundwater typically occur due to variations in rainfall, water level and other factors. Shallow trapped water may become evident during wet periods of the year and within interbedded sands.

It is possible that free surface water trapped under existing pavement base and against building walls may be encountered during demolition phase of the project.

5.0 EVALUATION AND RECOMMENDATIONS

The following design recommendations have been developed to assist the designers in preparing the foundation design and development plans for the proposed project. If any substantial changes in the proposed construction, scope, location, loads, or assumed grades should be brought to our attention so that we may evaluate how such changes may affect our conclusions and recommendations. Based on the test borings information and our understanding of the project, our geotechnical recommendations are provided in the subsequent sections of this report.

The opinions and recommendations submitted in this report are based, in part, on our interpretation of the subsurface information revealed by the subsurface test borings shown on Figure 1 included in Appendix A of this report. Understandably, this report does not reflect variations in subsurface conditions between or beyond the extent of the test boring locations. Therefore, variations in these conditions can be expected, and fluctuation of the groundwater level will occur with time.

5.1 General Earthwork Recommendations

5.1.1 Site Preparation

The existing building will be completely demolished. There are inherent risks of greater than typical settlement and poor structural performance associated with supporting structure (footings and slabs) on or above existing miscellaneous fills, debris, and undocumented fills. These risks can be significantly reduced by removing the fill debris and underlying unsuitable materials from beneath foundations and slabs and replacing them with approved engineered (crushed limestone INDOT No. 53) fill materials.

It is extremely critical that after demolition of the existing building on site, all associated cavities, and remnants of old fill, associated debris and any existing buried construction elements (e.g., foundations, slabs, concrete walls, utility corridors, etc.) should be completely removed wherever they are disclosed within the proposed structure footprint. Moreover, any buried utilities within the proposed work areas will need to be rerouted and/or properly abandoned as called for on the plans and project specifications. All

cavities must be adequately benched, stepped, and observed by responsible contractor for compliance with design specifications.

Following demolition of existing structure, and prior to placing new compacted engineered fill to establish grade to desired elevation, the subgrade must be inspected, proofrolled and approved. GME Testing should be retained on site during earthconnected phases of the project. New fill should be suitably backfilled and compacted.

The presence of old fills and buried debris, the exact extent of which is not yet known, will result in some difficulty during construction. Specifically, removal of old fills and buried debris may call for shoring systems or other means to protect adjacent construction. Due consideration should be given to the integrity of adjacent structure(s) and other construction that will remain. This will be the responsibility of others. Also, concrete and brick debris or impenetrable objects may be encountered during foundation excavations.

It is recommended that the unsuitable fill be removed to their full depth and replaced with engineered fill materials consisting of INDOT No. 53 crushed limestone aggregate in order to re-establish the site to desired building elevation. The bottom of excavation ranging in depth from approximately 8 to 10 or more feet below the existing ground surface should be expected, based on test borings. GME Testing should be on site to evaluate the soil conditions during removal, undercutting and replacement. Excavated spoil material should not be placed near the excavation slope.

Once the subgrade is prepared to desired grade and as recommended above, the subgrade should be observed or tested using Housel or dynamic cone penetrometer (DCP) and subjected to proofrolling evaluation by a GME Testing geotechnical engineer or engineering technician to confirm the presence of a suitable bearing stratum before any new grade-raise fill is placed and compacted. The existing subgrade should be proofrolled with heavy-weight equipment until the grade offers a relatively unyielding surface or until the specified degree of compaction has been achieved.

Depending on the final grading plans and the time of the year earthwork is expected to commence, the removal depth should be expected to vary. If earthwork and filling

activities are expected to start during or shortly following wet period, subgrade instability should be expected. Aerating and drying certain subgrade areas not containing debris and deleterious materials may be needed.

The purpose of the proofrolling is to detect soft, yielding, or unstable areas under the influence of construction traffic. All fill, organic, wet and compressible soils, yielding and pumping or otherwise unsuitable weak, and soft materials detected during this operation should be over-excavated or improved by appropriate preparation and stabilization techniques. We recommend that site preparation activities be undertaken during dry weather to minimize an increase of moisture content and decrease in strength of the near-surface soils.

All subgrade areas should be prepared and compacted to achieve a dry density of 95 percent or more of ASTM D-1557. All engineered fill should be placed over an approved subgrade and compacted to achieve a dry density of 95 percent or more of ASTM D-1557.

Backfill placed in utility excavations or against foundations should consist of a clean granular material which is generally more readily compacted to required densities than cohesive backfill in relatively confined areas.

The evaluation of the subgrade and selection of fill materials for various applications should be performed in consultation with a GME Testing representative. Similarly, the placement and compaction of fill for structural applications should be monitored and tested by a GME Testing representative.

Mass undercutting and replacement with suitable engineered fill as recommended in earlier in this report should be anticipated.

Ponding water from precipitation can soften subgrade soils, resulting in subgrade rutting and pumping under construction. It is recommended that, during grading operations, the surface of the site should always be sloped to promote immediate runoff of surface water. Repeated heavy construction traffic over subgrade could cause the subgrade to pump, yield and weak areas to develop and therefore should be avoided. Heavy construction traffic should use designated areas as directed by contractor.

The foregoing recommendations for earthwork and site preparation were developed based on our understanding of the project and the site conditions as interpreted in our field investigation. All earthwork and site preparation should be performed under the observation of the geotechnical engineers' field representative. Additionally, the earthwork recommendations may require modifications based on the field observations during construction. The appropriate course of action should be determined by the geotechnical engineer at the time of construction.

5.1.2 Engineered Fill

It is recommended that crushed limestone aggregate meeting INDOT No. 53 be used as engineered fill to replace undercut unsuitable fill debris, as a grade-raise fill and/or to establish desired grade on site. All fill should be approved by GME Testing prior to placement on site and should be compacted to 95 or more percent of the modified Proctor maximum dry density (ASTM D-1557).

The fill should be placed in lifts of uniform thickness. Compacted engineered fill should be placed in lifts no greater than 8-inches thick (loose). All structural fill should be compacted to 95 percent or more of its maximum modified Proctor dry density in accordance with ASTM D-1557. For proper and timely construction of the fills, the soils should be placed at approximately ± 2 percent of the optimum moisture content as determined by the specified Proctor test. Suitable equipment for either aerating or adding water to the fill material should be available as the soil moisture and weather conditions dictate.

5.2 Foundation Recommendations

Based on our field and laboratory testing and our understanding of the proposed project, we recommend conventional spread and strip footings be used to support the proposed construction. The site must be suitably prepared as discussed in this report and **Site Preparation**, Section 5.1.1 of this report. We recommend that all footings bear on approved engineered fill extending from approved native soils and/or firm native soils (i.e., very stiff to hard, sandy silty clays; hard, clayey sandy silts) at depths of 8 to 10 or more feet below existing ground surface.

GME Testing should be retained on site during earth-connected phases of the project. Since water was encountered at and below a depth of 10 and 11-feet below existing ground surface at time of drilling in test borings, all footings must be planned to bear at least 3-feet above groundwater levels to reduce sloughing, caving-ins and groundwaterrelated difficulties. If unsuitable soils are encountered at base of footings, they should be replaced with lean concrete immediately after undercutting.

Footings prepared and installed as recommended in this report may be designed and proportioned for a maximum net allowable soil bearing pressure of **4,000 pounds per square foot (psf)** for column (square type) and **3,000 psf** strip (wall type) footings. The above pressure may be increased to **5,000 psf** for column (square type) and **3,750 psf** for continuous (wall type) when considering the maximum edge pressure under transient wind load. An allowable coefficient of friction value of 0.25 (which includes a factor of safety of 1.5) may be used between concrete and new engineered fill or approved native soils. The bearing pressure values should be confirmed, pending demolition of existing building by performing additional test borings and/or test pits and inspections within the final footprint of the proposed structure.

In applying net allowable soil bearing pressure in the footing design, the weight of the footings and backfill over the footings, including the floor slab, need not be included in total loads for dimensioning footings.

All footings should be designed by a qualified professional structural engineer for maximum required loads. The structural engineer should take into consideration the depth below which suitable soils were encountered when establishing minimum depth of footings.

All exterior footings and footings in unheated areas should be located at a depth of 3.5 or more feet below final exterior grade for frost protection. If interior footings are planned in heated areas, they can be located at nominal depths below finished floor, provided that they bear on firm, native materials and/or engineered fill materials extending from firm native soils, and provided that other recommendations discussed earlier in this report are followed.

A suitable hand penetration device (DCP) should be used to check that the bearing soils at the base of the footings are consistent with the recommendations provided in this report. We strongly recommend that GME Testing be retained to check the foundation bearing soils for consistency with the conditions observed in our test borings, as well as other earthwork related matters during construction.

If new grade-raise fill is required below the proposed construction footprint, it should be placed on a suitable subgrade and compacted to achieve a minimum dry density of 95 or more percent as determined by ASTM D-1557.

It is essential that new fill soil below, above, and surrounding the footing consist of approved material, placed, and compacted in accordance with this report.

Under no circumstances should new footings be placed on or within existing fill, debris, organic soils, soft, compressible and/or unsuitable materials. All such materials must be removed as discussed above.

All footings should be suitably reinforced and installed as discussed in **Foundation Excavations and Monitoring,** Section 5.6 of this report and as called for on project plans and specifications. All footings should be adequately protected from disturbance and inclement weather during and after construction.

Concrete should be placed immediately in the footings after any undercutting to reduce bearing disturbance and water inflow in foundation excavation.

Provided that the foundations are properly installed, and all unsuitable materials are removed below all footings, total foundation settlements are not expected to exceed about (1) inch with differential settlements of up to $(\frac{1}{2})$ inch. Field control and proper footing proportions will contribute substantially to minimizing total and differential settlements.

Water infiltration if encountered in the footing excavations should be removed by adequate sumps placed outside the limits of the main footing excavations. If significant groundwater is experienced, more aggressive dewatering system and methods should be considered as determined by a dewatering contractor.

Positive drainage of surface water, including downspout discharge, should be maintained away from structure foundations to avoid wetting and weakening of the foundation soils both during construction and after construction is complete. Water must not be allowed to pond on or adjacent to the structures.

5.3 Ground-Supported Slabs

As discussed previously, mass removal of all debris and undocumented fill below proposed building footprint will be required and that all resulting cavities will be suitable backfilled with compacted engineered fill (crushed limestone aggregate INDOT No. 53). Following this activity and provided that our recommendations provided in **Site Preparation**, Section 5.1.1 of this report and applicable project specifications are followed, ground-supported floor slabs may be used. The floor slabs should be designed by a qualified structural engineer for the anticipated loadings.

A modulus of subgrade reaction of 125 pci may be used for design of the floor slab bearing on a minimum of 6-inches compacted crushed limestone aggregate. Note that the modulus of subgrade reaction is based on a 30-inches diameter loaded area. Suitable clean, free-draining soil should contain 5 to 10 percent fines, by weight, passing the No. 200 U.S. Standard sieve (i.e., INDOT No. 53 limestone). Utilizing the aggregate layer between the slabs will provide improved stability and greater protection of the subgrade.

Floor slabs-on-grade may be designed as floating slabs, which are structurally independent of any building footings or walls, and appropriately reinforced to support imposed loads.

Special attention should be made to the placement of backfill against the building foundations and walls as inadequate compaction of these locations may cause cracking of the slab edges and corners due to subsidence of the backfill.

Isolation joints should be provided at the junctions of the slab and foundation system so that a small amount of independent movement can occur without causing damage.

Depending on the choice of floor finishes, it may be appropriate to incorporate a moisture barrier below the floor slab. This decision should be evaluated by the architect and structural engineer. The flatwork contractor must use the appropriate equipment, materials, and methods to prevent undesirable slab curling/warping. The location of the vapor retarder needs to be determined by the architect or engineer based on the intended floor usage, finishes, and ACI recommendations. We recommend using only specific type(s) of well-established concrete mixes that have been 'tried and tested' to deliver successful long-term performance for each specific type of concrete application.

We recommend that the slab-on-grade subgrade soils be protected from frost during winter construction. Any frozen soils have to be thawed and compacted or removed and replaced prior to slab-on-grade construction.

5.4 Seismicity

The seismic design requirements for buildings and other structures are based on Seismic Design Category. Site Classification is required to determine the Seismic Design Category for a structure. The Site Classification is based on the upper 100-feet of the site profile defined by a weighted average value of either shear wave velocity, standard penetration resistance, or undrained shear strength in accordance with Section 20.4 of ASCE 7. Seismic report is included in Appendix B of this report.

Description	Value
2012 International Building Code Site Classification (IBC)	C ¹
Site Latitude	41.080649
Site Longitude	-85.141389
Ss	0.117g
S_1	0.061g
S _{DS}	0.093
S _{D1}	0.069

1. The 2012 IBC uses a site profile extending to a depth of 100 feet for seismic site classification. Borings at this site were extended to a maximum depth of 25-feet. The site properties below the boring depth to 100 feet were estimated based on our experience and knowledge of geologic conditions of the general area.

5.5 Excavations and Trenches

All excavating and trenching operations should comply with the requirements of OSHA 29CFR, Part 1926, Subpart P, "Excavations", which deals with excavation and trench safety. Trenches and excavation for utilities and other construction activities are subject to caving sides and can expose workers to engulfment hazards. All excavations should be monitored by a "Competent Person", as defined by the OSHA standard, and appropriate shoring or sloping techniques used to prevent cave-ins.

5.6 Foundation Excavations and Monitoring

Each foundation excavation should be evaluated by GME Testing to ensure that all unsuitable materials are removed, and that the foundation will bear on satisfactory material before forming and/or placing steel or concrete.

Concrete strength and consistency tests should also be carried out, in accordance with the project specifications.

Wherever unsuitable materials are encountered, undercutting and/or over-excavation will be required below footing excavations. The footings may be extended through unsuitable soils, soft, weak, or organic-containing materials to firm natural soils below or constructed on engineered fill placed in the undercut sized as shown in Figure 2, included in Appendix A. Alternately, lean concrete (i.e., 2,500 or more psi mix) may be used to replace unsuitable materials below footing excavations to limit lateral undercut and expedite construction activities.

If possible, all concrete for foundations should be poured the same day as the bearing surfaces are approved. If this is not practical, the foundation excavation should be adequately protected. Soils exposed in the bases of all excavations must be protected against any detrimental change in conditions such as from disturbance, rain, and freezing. Surface run-off water must be drained away and not allowed to pond in the excavations.

Extreme care must be exercised when considering the placement of new foundations of proposed 5-story building and walls adjacent to existing foundations in order to avoid overlapping zones of influence and compromising/undermining existing foundations by excavating below their bearing elevations. Depending on the size of the excavation and the proximity and level of the excavation with respect to the existing structure and other factors, it may be necessary to provide bracing and support for the sides of the excavations. All footings should be located so that the clear distance between any two footings will be at least equal to the difference in their bearing elevations, as illustrated in Figure 3 included in Appendix B of this report. If this distance cannot be maintained, the lower footing should be designed to account for the load imparted by the upper footing. Under no circumstance should new foundations to be placed on or within existing old fill, against old basement walls or backfill materials and should be extended below to approved native soils.

5.7 Groundwater Control

No significant groundwater related difficulties are expected for excavations that will extend above groundwater depths in borings. The contractor must be prepared to handle both surface and groundwater during construction, if encountered. Significant water inflow is anticipated for any excavations that are planned to extend to or below groundwater levels.

Depending on the excavation method to be selected for construction of underground structures, the means and methods of dewatering should be determined by the contractor

during construction. However, it is possible that seasonal variations will cause fluctuations in the water table.

Whenever groundwater is encountered during construction, measures should be taken to permit the construction to be completed in relatively dry conditions. When designing site drainage patterns, site runoff should be diverted away from the foundations and directed to on-site retention areas or storm sewer systems. It is anticipated that these measures can reduce the potential for softening and possible erosion of the foundation subgrade soils. It is necessary that water is not permitted to pond near the building areas and foundations. **The possible effects of construction dewatering on adjacent construction (e.g., dewatering-induced ground subsidence) should be considered by the contractor and their dewatering subcontractors.**

6.0 LIMITATIONS

This field evaluation, laboratory testing, and geotechnical analyses presented in this geotechnical report have been conducted in general accordance with current practice and the standard of care exercised by geotechnical consultants performing similar tasks in the project area. No other warranty, expressed or implied, is made regarding the conclusions, recommendations, and opinions presented in this report. There is no evaluation detailed enough to reveal every subsurface condition. Variations may exist and conditions not observed or described in this report may be encountered during construction. Additional subsurface evaluation will be performed upon request.

This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. GME Testing should be contacted if the reader requires additional information or has questions regarding the content, interpretations presented, or completeness of this document.

Our geotechnical recommendations and opinions are based on an analysis of the observed site conditions. If geotechnical conditions different from those described in this report are

encountered, our office should be notified and additional recommendations, if warranted, will be provided upon request.

Although general constructability issues have been considered in this report, the means, methods, techniques, sequences and operations of construction, safety precautions, and all items incidental thereto and consequences of, are the responsibility of parties to the Project other than GME Testing. This office should be contacted if additional guidance is needed in these matters.

The scope of our services does not include any environmental assessments or investigations for the possible presence of toxic materials in the soil, groundwater or surface water within or in the general vicinity of the site studied. Any statements made in this report or shown on the test borehole logs regarding unusual subsurface conditions and/or composition, odor, staining, origin or other characteristics of the surface and/or subsurface materials are strictly for the information of our client.

We wish to remind you that we will store the samples for 30 days after which time they will be discarded unless you request otherwise.

We appreciate the opportunity to be of service on this project. Should you have any questions related to this report, please contact us at your convenience.

Sincerely, GME Testing

Rami M. Anabtawi, P.E. Principal Engineer

Abby Laudenschlager Staff Engineer

S M Naziur Mahmud, E.I.T. Project Engineer

APPENDIX A

FIELD EXPLORATION

The subsurface conditions were based on drilling two (2) vertical soil test borings for the proposed project and extended to a depth of 25-feet each below the existing ground surface.

The planned locations of the test borings were determined by the client and established in the field by GME Testing. The site plan provided to us by the client was projected onto aerials provided by the Google Earth website allowing for the correlation of the approximate latitude and longitude coordinates with each boring location. These coordinates were then assigned as waypoints and uploaded into a handheld GPS unit. Utilizing the handheld GPS unit, the locations referred to on our boring logs and presented on Figure 1, included in Appendix A of this report.

The lines of demarcation shown on the logs represent approximate boundaries between the various classifications. The stratification of soils, as shown on the accompanying test borehole logs, represents the soil conditions at the drilled borehole locations, and variations may occur between the boreholes. In-situ strata changes could occur gradually or at different levels. Also, it should be noted that the boreholes depict conditions at the particular locations and times indicated.

Drilling and Sampling Procedures

The test borings were drilled using conventional augers to advance the holes and representative samples of the soils were obtained employing split-barrel sampling techniques in accordance with ASTM procedures D-1586-84. After completion of the borings and water level readings, the auger holes were backfilled with auger cuttings.

The description and depths of soil strata encountered and levels at which samples were recovered are indicated on the accompanying borehole log sheets in the Appendix B. In the column "Soil/Material Description" on the drill borehole log, the horizontal lines represent stratum changes. A solid line represents an observed change, and a dashed line represents an estimated change. An explanation of the symbols and terms used on the boring log sheets is given in Appendix B of this report.

Field Tests and Measurements

Standard Penetration Test: During the sampling procedures, Standard Penetration Test (SPT) was performed at regular intervals through the depth of the borings. The SPT value ("N"-value) is defined as the number of blows required to advance a 2-inch O.D., splitbarrel sampler a distance of one foot by a 140-pound hammer falling 30-inches. These values provide a useful preliminary indication of the consistency or relative density of most soil deposits and are included on the Borehole Logs in Appendix B.

Water Level Measurements: Groundwater level observations were made in the boring holes during and upon completion of the boring operations. The groundwater level measurements are noted on the boring logs presented herein.

All recovered samples were returned to GME Testing laboratory for visual examination and subsequent laboratory testing.

LABORATORY TESTING

Selected soil samples obtained from the drilling and sampling program were tested in the laboratory to evaluate additional pertinent engineering characteristics of the foundation materials necessary in estimating the engineering properties of these materials.

Soil Laboratory Tests and Measurements

Visual Classification: All samples were visually classified by a geotechnical engineer in general accordance with ASTM D-2488, and on the Borehole Logs, which are located in the Appendix B of this report.

Moisture Content Tests: The natural moisture content of selected samples was determined by ASTM method D-2216 and is recorded on the Borehole Logs as a percentage of dry weight of soil under the "MC".

Hand Penetration Tests: Samples of cohesive soils obtained from the split spoon sampler were tested with a calibrated hand penetrometer to aid in evaluating the soil strength

characteristics. The results from this testing are tabulated on the Borehole Logs under the heading "Q_P".

GEOLOGIC CONDITIONS

According to the United States Department of Agriculture (USDA) Soil Survey and Natural Resources Conservation Service (NRCS), the natural soils covering the majority of the site are classified as Martinsville loam (McB), 2 to 6 percent slopes type soils. A copy of the Custom Soil Resource Report for Allen County, Indiana has been included in Appendix B of this report.

VICINITY MAP (NOT TO SCALE)

NOTES N 1. All boring locations were determined by the client and established in the field by LEGEND GME Testing based on a plan provided of the anticipated construction footprint and are approximate. **B**-1 2. Vicinity map generated using imagery from google.com/maps. Test Boring Location and Designation FIGURE 1 – APPROXIMATE BORING LOCATION MAP GME Project Name: Proposed Mercantile Store and Apartments Location: 619 South Harrison Street, Fort Wayne, IN **GME TESTING** Client Name: Design Collaborative, Inc. GME Project Number: G20-120465

APPENDIX B

GENERAL NOTES

SAMPLE IDENTIFICATION

Visual soil classifications are made in general accordance with the United States Soil Classification System on the basis of textural and particle size categorization, and various soil behavior and characteristics. Visual classifications should be made by appropriate laboratory testing when more exact soil identification is required to satisfy specific project applications criteria.

<u>RELATIVE PROPORTIONS OF</u> COHESIONLESS SOILS

Term	Defining Range by % of Weight	
Trace	1-10 %	
Little	11-20 %	
Some	21-35 %	
And	36-50 %	
WATER LH	EVEL MEASUREMENT	
NE	No Water Encountered	

1.12	nie water Eneountereu
BF	Backfilled upon Completion

ORGANIC CONTENT BY COMBUSTION METHOD

Soil Description	LOI	(
w/ organic matter	4-15 %	(
Organic Soil (A-8)	16-30 %	Ν
Peat (A-8)	More than 30%	Ι
		г

LABORATORY TESTS

Qp	Penetrometer Reading, tsf
Qu	Unconfined Strength, tsf
MC	Moisture Content, %
LL	Liquid Limit, %
PL	Plastic Limit, %
PI	Plastic Index
SL	Shrinkage Limit, %
pН	Measure of Soil Alkalinity/Acidity
γ	Dry Unit Weight, pcf
LOI	Loss of Ignition, %

DRILLING AND SAMPLING SYMBOLS

	DIMDULD
AS	Auger Sample
BS	Bag Sample
PID	Photo ionization Detector (Hnu meter)
	volatile vapor level,(PPM)
COA	Clean-Out Auger
CS	Continuous Sampling
FA	Flight Auger
HA	Hand Auger
HAS	Hollow Stem Auger
NR	No Recovery
PT	3" O.D. Piston Tube Sample
RB	Rock Bit
RC	Rock Coring
REC	Recovery
RQD	Rock Quality Designation
RS	Rock Sounding
S	Soil Sounding
SS	2"O.D. Split-Barrel Sample
2ST	2"O.D. Tin-Walled Tube Sample
3ST	3" O.D. Thin-Walled Tube Sample
VS	Vane Shear Test
DB	Diamond Bit
WS	Wash Sample
RB	Roller Bit
ST	Shelby Tube, 2" O.D. or 3" O.D.
CB	Carbide Bit
WOH	Weight of the Hammer

GRAIN SIZE TERMINOLOGY		RELATIVE DENSITY		CONSISTENCY		PLASTICITY		
		Us standard sieve		<u>"N"</u>		<u>"N"</u>		Plastic
Soil fraction	Particle size	size	Term	Value	Term	Value	Term	Index
Boulders	larger than 75 mm	Larger than 3"	Very Loose	0-5	Very Soft	0-3	None to Slight	0-4
Gravel	2mm to 75 mm	#10 to 75 mm	Loose	6-10	Soft	4-5	Slight	5-7
Coarse Sand	0.425 mm to 2 mm	#40 to #10	Medium Dense	11-30	Medium Stiff	6-10	Medium	8-22
Fine Sand	0.075mm to 0.425 mm	#200 to #40	Dense	31-50	Stiff	11-15	High/Very High	Over 22
Silt	0.002 mm to 0.075 mm	Smaller than #200	Very Dense	51+	Very Stiff	16-30		
Clay	Smaller than 0.002 mm	Smaller than #200			Hard	31+		

Note(s):

The penetration resistance, "N" Value, is the summation of the number of blows required to effect two successive 6-inch penetrations of the 2-inch splitbarrel sampler. The sampler is driven with a 140-lb. weight falling 30-inches and is seated to a depth of 6-inches before commencing the standard penetration test.

Water level measurements shown on the boring logs represent conditions at the time indicated and may not reflect static levels, especially in cohesive soils

GME TESTING 3517 Focus Drive Fort Wayne, IN 46818 (260) 497- 8127• (877) 660-4GME• (260) 497- 0826 fax Division of GEOTECHNICAL & MATERIALS ENGINEERS, INC. www.gmetesting.com

SOIL CLASSIFICATION CHART

MA. IOR DIVISIONS			SYMBOLS		TYPICAL
141	0110	GRAPH	LETTER	DESCRIPTIONS	
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
MORE THAN 50%	SAND AND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
LARGER THAN NO. 200 SIEVE SIZE	SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES
	MORE THAN 50% OF COARSE	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
	PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
00120				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE		LIQUID LIMIT GREATER THAN 50		МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
SIZE	SILTS AND CLAYS			СН	INORGANIC CLAYS OF HIGH PLASTICITY
				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
Н	GHLY ORGANIC S	SOILS		PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

3517 FOCUS DRIVE- FORT WAYNE, INDIANA 46818 • TEL: (260) 497-8127 • 877. 660. 4GME • FAX: (260) 497-0826

Subsurface Exploration • Geotechnical Evaluation • Foundation Engineering • Construction Materials Testing & Monitoring Services
<u>www.gmetesting.com</u>

OSHPD

Latitude, Longitude: 41.080649, -85.141389

Fulton St	Boudoi	r Noir Nawa - Inspired Asian Cuisine & Cocktails Pearl St Fort Wayne's Famous Coney Island The Hoppy Gnome History Center Berry St Eberry St Map data ©2020
Design	Code Referer	IC: 20/20/20, 4:20:00 F W
Risk Ca	tegory	
Site Cla	ss	C - Very Dense Soil and Soft Rock
Type	Value	Description
SS	0.117	MCE _R ground motion. (for 0.2 second period)
S ₁	0.061	MCE _R ground motion. (for 1.0s period)
S _{MS}	0.14	Site-modified spectral acceleration value
S _{M1}	0.104	Site-modified spectral acceleration value
S _{DS}	0.093	Numeric seismic design value at 0.2 second SA
S _{D1}	0.069	Numeric seismic design value at 1.0 second SA
Туре	Value	Description
SDC	В	Seismic design category
Fa	1.2	Site amplification factor at 0.2 second
Fv	1.7	Site amplification factor at 1.0 second
PGA	0.055	MCE _G peak ground acceleration
F _{PGA}	1.2	Site amplification factor at PGA
PGA _M	0.066	Site modified peak ground acceleration
ΤL	12	Long-period transition period in seconds
SsRT	0.117	Probabilistic risk-targeted ground motion. (0.2 second)
SsUH	0.127	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration
SsD	1.5	Factored deterministic acceleration value. (0.2 second)
S1RT	0.061	Probabilistic risk-targeted ground motion. (1.0 second)
S1UH	0.069	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.
S1D	0.6	Factored deterministic acceleration value. (1.0 second)
PGAd	0.6	Factored deterministic acceleration value. (Peak Ground Acceleration)
C _{RS}	0.918	Mapped value of the risk coefficient at short periods
C _{R1}	0.884	Mapped value of the risk coefficient at a period of 1 s

DISCLAIMER

While the information presented on this website is believed to be correct, <u>SEAOC /OSHPD</u> and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Allen County, Indiana

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	
Soil Map	9
Legend	10
Map Unit Legend	11
Map Unit Descriptions	11
Allen County, Indiana	13
McB-Martinsville loam, 2 to 6 percent slopes	
References	15

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

	MAP L	EGEND		MAP INFORMATION
Area of Int	terest (AOI) Area of Interest (AOI)		Spoil Area	The soil surveys that comprise your AOI were mapped at 1:15,800.
Soils	Soil Map Unit Polvgons	0	Very Stony Spot	Warning: Soil Map may not be valid at this scale.
~	Soil Map Unit Lines	\$ △	Wet Spot Other	Enlargement of maps beyond the scale of mapping can cause
Special	Point Features	 Water Fea	Special Line Features	line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed
o X	Borrow Pit	Transport	Streams and Canals	Places roly on the her scale on each man sheet for man
X	Clay Spot Closed Depression	+++	Rails	measurements.
X	Gravel Pit	~	US Routes	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
÷ Ø	Landfill	~	Major Roads Local Roads	Maps from the Web Soil Survey are based on the Web Mercator
٨.	Lava Flow Marsh or swamp	Backgrou	nd Aerial Photography	projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more
*	Mine or Quarry Miscellaneous Water			accurate calculations of distance or area are required.
0	Perennial Water			of the version date(s) listed below.
× +	Rock Outcrop Saline Spot			Soil Survey Area: Allen County, Indiana Survey Area Data: Version 20, Jun 2, 2020
:: =	Sandy Spot Severely Eroded Spot			Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.
\$	Sinkhole			Date(s) aerial images were photographed: Aug 1, 2018—Sep
\$ Ø	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
МсВ	Martinsville loam, 2 to 6 percent slopes	0.1	100.0%
Totals for Area of Interest		0.1	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Allen County, Indiana

McB—Martinsville loam, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: 5jd4 Elevation: 600 to 1,250 feet Mean annual precipitation: 36 to 43 inches Mean annual air temperature: 48 to 54 degrees F Frost-free period: 150 to 180 days Farmland classification: All areas are prime farmland

Map Unit Composition

Martinsville and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Martinsville

Setting

Landform: Outwash plains, stream terraces, lake plains Landform position (two-dimensional): Shoulder, backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Linear Parent material: Loamy outwash

Typical profile

Ap - 0 to 8 inches: loam Bt1 - 8 to 17 inches: sandy clay loam Bt2 - 17 to 43 inches: sandy clay loam BC - 43 to 53 inches: sandy loam C - 53 to 80 inches: stratified sand to silt loam

Properties and qualities

Slope: 2 to 6 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 40 percent
Available water capacity: High (about 10.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: B Ecological site: F111BY404IN - DRY OUTWASH UPLAND Other vegetative classification: Trees/Timber (Woody Vegetation) Hydric soil rating: No

Minor Components

Digby

Percent of map unit: 5 percent Landform: Outwash plains, glacial drainage channels Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve Down-slope shape: Linear Across-slope shape: Linear Ecological site: F111BY403IN - OUTWASH UPLAND Other vegetative classification: Trees/Timber (Woody Vegetation) Hydric soil rating: No

Wawaka

Percent of map unit: 5 percent Landform: Till plains Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Trees/Timber (Woody Vegetation) Hydric soil rating: No

Rawson

Percent of map unit: 5 percent Landform: Till plains Landform position (two-dimensional): Shoulder, summit Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Linear Ecological site: F111BY503IN - TILL RIDGE Other vegetative classification: Trees/Timber (Woody Vegetation) Hydric soil rating: No

Haney

Percent of map unit: 5 percent Landform: Glacial drainage channels, outwash plains Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve Down-slope shape: Linear Across-slope shape: Linear Ecological site: F111BY404IN - DRY OUTWASH UPLAND Other vegetative classification: Trees/Timber (Woody Vegetation) Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

SECTION 01 10 00 - SUMMARY

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Work covered by Contract Documents.

1.2 PROJECT INFORMATION

- A. Project Identification: Columbia Street West Historic Renovations and New Building
 - 1. Project Location: 135 W Columbia Street, Fort Wayne, IN, 46802
 - 2. Owner: Model Group
 - 3. Owner's Representative: George Keppler, VP of Construction.
- B. Architect: Design Collaborative, 200 East Main St., Suite 600, Fort Wayne, IN 46802.

1.3 WORK COVERED BY CONTRACT DOCUMENTS

- A. The Work of Project is defined by the Contract Documents and consists of the following:
 - 1. Renovations to existing buildings previously known as the Columbia Street West Bar, and a new adjacent building. The renovations occur in four historic addresses that have been combined into one space on the main level. This project separates the four historic addresses to suite the life safety of the tenants as follows: Building 1: 133 & 135 W Columbia Street and 611 S Harrison Street. Building 2: 613 S Harrison Street. Building 3 is a new building at 617 S Harrison Street.

1.4 ACCESS TO SITE

- A. General: Contractor shall have full use of Project site for construction operations during construction period. Contractor's use of Project site is limited only by Owner's right to perform work or to retain other contractors on portions of Project.
- B. Condition of Existing Building: Maintain portions of existing building affected by construction operations in a weathertight condition throughout construction period. Repair damage caused by construction operations.

1.5 WORK RESTRICTIONS

A. Work Restrictions, General: Comply with restrictions on construction operations.

- 1. Comply with limitations on use of public streets and with other requirements of authorities having jurisdiction.
- B. On-Site Work Hours: Limit work in the existing building to normal business working hours of 7:30 a.m. to 6:30 p.m., Monday through Friday, unless otherwise indicated. Additional work hours must be approved and coordinated with Owner's Representative.
- C. Noise, Vibration, and Odors: Coordinate operations that may result in high levels of noise and vibration, odors, or other disruption to nearby residential or business occupants with Owner.
 - 1. Notify Architect & Owner not less than 2 days in advance of proposed disruptive operations.

1.6 SPECIFICATION AND DRAWING CONVENTIONS

- A. Specification Content: The Specifications use certain conventions for the style of language and the intended meaning of certain terms, words, and phrases when used in particular situations. These conventions are as follows:
 - 1. Imperative mood and streamlined language are generally used in the Specifications. The words "shall," "shall be," or "shall comply with," depending on the context, are implied where a colon (:) is used within a sentence or phrase.
 - 2. Specification requirements are to be performed by Contractor unless specifically stated otherwise.
- B. Division 01 General Requirements: Requirements of Sections in Division 01 apply to the Work of all Sections in the Specifications.
- C. Drawing Coordination: Requirements for materials and products identified on Drawings are described in detail in the Specifications. One or more of the following are used on Drawings to identify materials and products:
 - 1. Terminology: Materials and products are identified by the typical generic terms used in the individual Specifications Sections.
 - 2. Abbreviations: Materials and products are identified by abbreviations published as part of the U.S. National CAD Standard and scheduled on Drawings.
 - 3. Keynoting: Materials and products are identified by reference keynotes referencing Specification Section numbers found in this Project Manual.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 01 10 00

SUMMARY

SECTION 01 33 00 - SUBMITTAL PROCEDURES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes requirements for the submittal schedule and administrative and procedural requirements for submitting Shop Drawings, Product Data, Samples, and other submittals.
- B. Related Requirements:
 - 1. Section 01 32 00 "Construction Progress Documentation" for submitting schedules and reports, including Contractor's construction schedule.
 - 2. Section 01 78 23 "Operation and Maintenance Data" for submitting operation and maintenance manuals.
 - 3. Section 01 78 39 "Project Record Documents" for submitting record Drawings, record Specifications, and record Product Data.
 - 4. Section 01 79 00 "Demonstration and Training" for submitting video recordings of demonstration of equipment and training of Owner's personnel.

1.2 DEFINITIONS

- A. Action Submittals: Written and graphic information and physical samples that require Architect's responsive action.
- B. Informational Submittals: Written and graphic information and physical samples that do not require Architect's responsive action. Submittals may be rejected for not complying with requirements.

1.3 ACTION SUBMITTALS

- A. Submittal Schedule: Submit a list of submittals organized by CSI specification section order. Provide dates for projected submission to Design Collaborative. When establishing dates, contractor shall anticipate required time for review, ordering, manufacturing, fabrication, and delivery. Include additional time required for making corrections or revisions to submittals noted by Architect and additional time for handling and reviewing submittals required by those corrections.
 - 1. Initial Submittal: Submit to the Architect 14 days following Notice of Award of Contract via email. Dates must be included for any submittal required during the first 60 days of construction or submittals that must be coordinated with other submittals required for the first 60 days of construction. Architect will review initial submittal schedule and provide comments for Final Submittal.

- 2. Final Submittal: Submit a final Submittal Schedule prior to the first scheduled construction meeting or 30 days following Notice of Award of Contract, whichever occurs first. Final Submittal Schedule must be submitted before the Initial Application for Payment, refer to specification section 01 29 00 Payment Procedures.
- 3. Format: Arrange the following information in a tabular format:
 - a. Specification Number Must align with project manual specification section (i.e. 084113)
 - b. Incremental Suffix describing package number (i.e. 084113-1)
 - c. Title/Description of submittal (i.e. Aluminum Storefront Shop Drawings)
 - d. Projected Submission Date: Date the submission will occur to Design Collaborative
 - e. Required Submittal Return Date: Include date for critical submittals. GC must coordinate all required time as mentioned above. With notice and approval, a shortened review time can be accomplished for submittal reviews. <u>This expedited review shall not occur on more than 10% of submittals</u>.

1.4 SUBMITTAL ADMINISTRATIVE REQUIREMENTS

- A. Architect's Digital Data Files: Electronic copies of digital data files of the Contract Drawings can be provided by Architect for Contractor's use in preparing submittals.
 - 1. Refer to Section 00 31 00 Electronic Documents for access, process, cost and expectations of use.
- B. Coordination: Coordinate preparation and processing of submittals with performance of construction activities.
 - 1. Coordinate each submittal with fabrication, purchasing, testing, delivery, other submittals, and related activities that require sequential activity.
 - 2. Coordinate transmittal of different types of submittals for related parts of the Work so processing will not be delayed because of need to review submittals concurrently for coordination.
 - a. Architect reserves the right to withhold action on a submittal requiring coordination with other submittals until related submittals are received.
- C. Processing Time: Allow time for submittal review, including time for resubmittals, as follows. Time for review shall commence on Architect's receipt of submittal. No extension of the Contract Time will be authorized because of failure to transmit submittals enough in advance of the Work to permit processing, including resubmittals.
 - 1. Initial Review: Allow 15 business days for initial review of each submittal. Allow additional time if coordination with subsequent submittals is required. Architect will advise Contractor when a submittal being processed must be delayed for coordination.
 - 2. Intermediate Review: If intermediate submittal is necessary, process it in same manner as initial submittal.
 - 3. Resubmittal Review: Allow 10 business days for review of each resubmittal.

- D. Submittal Procedures: All shop drawings, coordination drawings, product data, warranty information, etc. shall be submitted electronically for review.
 - 1. All shop drawings are to be uploaded Construction Manager's online project management software. Files will need to be saved in PDF format as a single file.
 - 2. If the submittal includes a physical sample, a cover sheet and electronic photo or scan of the sample shall be uploaded prior to delivery of physical sample. Large samples should be delivered directly to the office of the Architect to the attention of the Submittals Secretary and must be labeled with all of the required information.
 - 3. Each item being submitted is to include a transmittal, that has been signed by construction company Project Manager, as the first page of the PDF with the following information listed:
 - a. Construction company name and contact information
 - b. Name of the project
 - c. Section number
 - 1) If submittal was listed on the drawings, please use the Division number as the section number (example 040000_description)
 - d. Description
 - 4. Submittal will be rejected if not submitted properly or if the form is not filled out and signed.
 - 5. Awarded Contractor will receive an invitation to create an account on Procore. Contractor MUST create an account as all Submittals will flow through this site. All submittals are to be uploaded to the Procore website for review. The filename for each uploaded file should be as follows: Section #_Section Name Example: 042113_Brick Masonry
 - 6. When shop drawing review is complete, they will be returned through the Procore website. If necessary, please make sure appropriate permissions are setup to enable the receipt of emails from Procore.
 - 7. Direct all submittals to the <u>Project Administrator Katie Hiebel</u> (khiebel@designcollaborative.com).
- E. Use for Construction: Retain complete copies of submittals on Project site. Use only final action submittals that are marked with approval notation from Architect's action stamp.

PART 2 - PRODUCTS

2.1 SUBMITTAL PROCEDURES

A. Product Data: Collect information into a single submittal for each element of construction and type of product or equipment.

- 1. If information must be specially prepared for submittal because standard published data are not suitable for use, submit as Shop Drawings, not as Product Data.
- 2. Mark each copy of each submittal to show which products and options are applicable.
- 3. Include the following information, as applicable:
 - a. Manufacturer's catalog cuts.
 - b. Manufacturer's product specifications.
 - c. Standard color charts.
 - d. Statement of compliance with specified referenced standards.
 - e. Testing by recognized testing agency.
 - f. Application of testing agency labels and seals.
 - g. Notation of coordination requirements.
 - h. Availability and delivery time information.
- 4. For equipment, include the following in addition to the above, as applicable:
 - a. Wiring diagrams showing factory-installed wiring.
 - b. Printed performance curves.
 - c. Operational range diagrams.
 - d. Clearances required to other construction, if not indicated on accompanying Shop Drawings.
- 5. Submit Product Data before or concurrent with Samples.
- 6. Submit Product Data in the following format:
 - a. PDF electronic file.
- B. Shop Drawings: Prepare Project-specific information, drawn accurately to scale. Do not base Shop Drawings on reproductions of the Contract Documents or standard printed data.
 - 1. Preparation: Fully illustrate requirements in the Contract Documents. Include the following information, as applicable:
 - a. Identification of products.
 - b. Schedules.
 - c. Compliance with specified standards.
 - d. Notation of coordination requirements.
 - e. Notation of dimensions established by field measurement.
 - f. Relationship and attachment to adjoining construction clearly indicated.
 - g. Seal and signature of professional engineer if specified.
 - 2. Sheet Size: Except for templates, patterns, and similar full-size drawings, submit Shop Drawings on sheets at least 8-1/2 by 11 inches, but no larger than 30 by 42 inches.
 - 3. Submit Shop Drawings in the following format:
 - a. Single PDF electronic file.

- C. Samples: Submit Samples for review of kind, color, pattern, and texture for a check of these characteristics with other elements and for a comparison of these characteristics between submittal and actual component as delivered and installed.
 - 1. Transmit Samples that contain multiple, related components such as accessories together in one submittal package.
 - 2. Identification: Submit samples with the Project Submittal Form provided:
 - a. Generic description of Sample.
 - b. Product name and name of manufacturer.
 - c. Sample source.
 - d. Number and title of applicable Specification Section.
 - 3. Disposition: Maintain sets of approved Samples at Project site, available for quality-control comparisons throughout the course of construction activity. Sample sets may be used to determine final acceptance of construction associated with each set.
 - a. Samples not incorporated into the Work, or otherwise designated as Owner's property, are the property of Contractor.
 - 4. Samples for Initial Selection: Submit manufacturer's color charts consisting of units or sections of units showing the full range of colors, textures, and patterns available.
 - a. Number of Samples: Submit one full set of available choices where color, pattern, texture, or similar characteristics are required to be selected from manufacturer's product line. Architect will return submittal with options selected.
 - 5. Samples for Verification: Submit full-size units or Samples of size indicated, prepared from same material to be used for the Work, cured and finished in manner specified, and physically identical with material or product proposed for use, and that show full range of color and texture variations expected. Samples include, but are not limited to, the following: partial sections of manufactured or fabricated components; small cuts or containers of materials; complete units of repetitively used materials; swatches showing color, texture, and pattern; color range sets; and components used for independent testing and inspection.
 - a. Number of Samples: Submit two sets of Samples. Architect will retain one Sample; remainder will be returned. Mark up and retain one returned Sample set as a project record sample.
 - 1) If variation in color, pattern, texture, or other characteristic is inherent in material or product represented by a Sample, submit at least three sets of paired units that show approximate limits of variations.
- D. Coordination Drawings Submittals: Comply with requirements specified in Section 01 31 00 "Project Management and Coordination."
- E. Contractor's Construction Schedule: Comply with requirements specified in Section 01 32 00 "Construction Progress Documentation."

- F. Application for Payment and Schedule of Values: Comply with requirements specified in Section 01 29 00 "Payment Procedures.
- G. Test and Inspection Reports and Schedule of Tests and Inspections Submittals: Comply with requirements specified in Section 01 40 00 "Quality Requirements."
- H. Closeout Submittals and Maintenance Material Submittals: Comply with requirements specified in Section 01 77 00 "Closeout Procedures."
- I. Maintenance Data: Comply with requirements specified in Section 01 78 23 "Operation and Maintenance Data."
- J. Qualification Data: Prepare written information that demonstrates capabilities and experience of firm or person. Include lists of completed projects with project names and addresses, contact information of architects and owners, and other information specified.
- K. Welding Certificates: Prepare written certification that welding procedures and personnel comply with requirements in the Contract Documents. Submit record of Welding Procedure Specification and Procedure Qualification Record on AWS forms. Include names of firms and personnel certified.
- L. Installer Certificates: Submit written statements on manufacturer's letterhead certifying that Installer complies with requirements in the Contract Documents and, where required, is authorized by manufacturer for this specific Project.
- M. Manufacturer Certificates: Submit written statements on manufacturer's letterhead certifying that manufacturer complies with requirements in the Contract Documents. Include evidence of manufacturing experience where required.
- N. Product Certificates: Submit written statements on manufacturer's letterhead certifying that product complies with requirements in the Contract Documents.
- O. Material Certificates: Submit written statements on manufacturer's letterhead certifying that material complies with requirements in the Contract Documents.
- P. Material Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting test results of material for compliance with requirements in the Contract Documents.
- Q. Product Test Reports: Submit written reports indicating that current product produced by manufacturer complies with requirements in the Contract Documents. Base reports on evaluation of tests performed by manufacturer and witnessed by a qualified testing agency, or on comprehensive tests performed by a qualified testing agency.
- R. Research Reports: Submit written evidence, from a model code organization acceptable to authorities having jurisdiction, that product complies with building code in effect for Project.
- S. Schedule of Tests and Inspections: Comply with requirements specified in Section 01 40 00 "Quality Requirements."

- T. Preconstruction Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of tests performed before installation of product, for compliance with performance requirements in the Contract Documents.
- U. Compatibility Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of compatibility tests performed before installation of product. Include written recommendations for primers and substrate preparation needed for adhesion.
- V. Field Test Reports: Submit written reports indicating and interpreting results of field tests performed either during installation of product or after product is installed in its final location, for compliance with requirements in the Contract Documents.
- W. Design Data: Prepare and submit written and graphic information, including, but not limited to, performance and design criteria, list of applicable codes and regulations, and calculations. Include list of assumptions and other performance and design criteria and a summary of loads. Include load diagrams if applicable. Provide name and version of software, if any, used for calculations. Include page numbers.

2.2 DELEGATED-DESIGN SERVICES

- A. Performance and Design Criteria: Where professional design services or certifications by a design professional are specifically required of Contractor by the Contract Documents, provide products and systems complying with specific performance and design criteria indicated.
 - 1. If criteria indicated are not sufficient to perform services or certification required, submit a written request for additional information to Architect.
- B. Delegated-Design Services Certification: In addition to Shop Drawings, Product Data, and other required submittals, submit digitally signed PDF electronic file paper copies of certificate, signed and sealed by the responsible design professional, for each product and system specifically assigned to Contractor to be designed or certified by a design professional.
 - 1. Indicate that products and systems comply with performance and design criteria in the Contract Documents. Include list of codes, loads, and other factors used in performing these services.

PART 3 - EXECUTION

3.1 CONTRACTOR'S REVIEW

A. Action and Informational Submittals: Review each submittal and check for coordination with other Work of the Contract and for compliance with the Contract Documents. Note corrections and field dimensions. Mark with approval stamp before submitting to Architect.

- B. Project Closeout and Maintenance Material Submittals: See requirements in Section 01 77 00 "Closeout Procedures."
- C. Approval Stamp: Stamp each submittal with a uniform, approval stamp. Include Project name and location, submittal number, Specification Section title and number, name of reviewer, date of Contractor's approval, and statement certifying that submittal has been reviewed, checked, and approved for compliance with the Contract Documents.

3.2 ARCHITECT'S ACTION

- A. General: Architect will not review submittals that do not bear Contractor's approval stamp and will return them without action.
- B. Action Submittals: Architect will review each submittal, make marks to indicate corrections or revisions required, and return it. Architect will stamp each submittal with an action stamp and will mark stamp appropriately to indicate action.
- C. Informational Submittals: Architect will review each submittal and will not return it, or will return it if it does not comply with requirements. Architect will forward each submittal to appropriate party.
- D. Incomplete submittals are unacceptable, will be considered nonresponsive, and will be returned for resubmittal without review.
- E. Submittals not required by the Contract Documents may not be reviewed and may be discarded.

END OF SECTION 01 33 00

SECTION 01 40 00 - QUALITY REQUIREMENTS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes administrative and procedural requirements for quality assurance and quality control.
- B. Testing and inspecting services are required to verify compliance with requirements specified or indicated. These services do not relieve Contractor of responsibility for compliance with the Contract Document requirements.
 - 1. Specified tests, inspections, and related actions do not limit Contractor's other quality-assurance and -control procedures that facilitate compliance with the Contract Document requirements.
 - 2. Requirements for Contractor to provide quality-assurance and -control services required by Architect, Owner, or authorities having jurisdiction are not limited by provisions of this Section.
 - 3. Specific test and inspection requirements are not specified in this Section.

1.2 DEFINITIONS

- A. Mockups: Full-size physical assemblies that are constructed on-site. Mockups are constructed to verify selections made under Sample submittals; to demonstrate aesthetic effects and, where indicated, qualities of materials and execution; to review coordination, testing, or operation; to show interface between dissimilar materials; and to demonstrate compliance with specified installation tolerances. Mockups are not Samples. Unless otherwise indicated, approved mockups establish the standard by which the Work will be judged.
- B. Product Testing: Tests and inspections that are performed by an NRTL, an NVLAP, or a testing agency qualified to conduct product testing and acceptable to authorities having jurisdiction, to establish product performance and compliance with specified requirements.
- C. Source Quality-Control Testing: Tests and inspections that are performed at the source, e.g., plant, mill, factory, or shop.
- D. Field Quality-Control Testing: Tests and inspections that are performed on-site for installation of the Work and for completed Work.
- E. Testing Agency: An entity engaged to perform specific tests, inspections, or both. Testing laboratory shall mean the same as testing agency.
- F. Installer/Applicator/Erector: Contractor or another entity engaged by Contractor as an employee, Subcontractor, or Sub-subcontractor, to perform a particular construction operation, including installation, erection, application, and similar operations.
- 1. Use of trade-specific terminology in referring to a trade or entity does not require that certain construction activities be performed by accredited or unionized individuals, or that requirements specified apply exclusively to specific trade(s).
- G. Experienced: When used with an entity or individual, "experienced" means having successfully completed a minimum of five previous projects similar in nature, size, and extent to this Project; being familiar with special requirements indicated; and having complied with requirements of authorities having jurisdiction.

1.3 CONFLICTING REQUIREMENTS

- A. Referenced Standards: If compliance with two or more standards is specified and the standards establish different or conflicting requirements for minimum quantities or quality levels, comply with the most stringent requirement. Refer conflicting requirements that are different, but apparently equal, to Architect for a decision before proceeding.
- B. Minimum Quantity or Quality Levels: The quantity or quality level shown or specified shall be the minimum provided or performed. The actual installation may comply exactly with the minimum quantity or quality specified, or it may exceed the minimum within reasonable limits. To comply with these requirements, indicated numeric values are minimum or maximum, as appropriate, for the context of requirements. Refer uncertainties to Architect for a decision before proceeding.

1.4 REPORTS AND DOCUMENTS

- A. Test and Inspection Reports: Prepare and submit certified written reports specified in other Sections. Include the following:
 - 1. Date of issue.
 - 2. Project title and number.
 - 3. Name, address, and telephone number of testing agency.
 - 4. Dates and locations of samples and tests or inspections.
 - 5. Names of individuals making tests and inspections.
 - 6. Description of the Work and test and inspection method.
 - 7. Identification of product and Specification Section.
 - 8. Complete test or inspection data.
 - 9. Test and inspection results and an interpretation of test results.
 - 10. Record of temperature and weather conditions at time of sample taking and testing and inspecting.
 - 11. Comments or professional opinion on whether tested or inspected Work complies with the Contract Document requirements.
 - 12. Name and signature of laboratory inspector.
 - 13. Recommendations on retesting and reinspecting.
- B. Manufacturer's Field Reports: Prepare written information documenting tests and inspections specified in other Sections. Include the following:

- 1. Name, address, and telephone number of representative making report.
- 2. Statement on condition of substrates and their acceptability for installation of product.
- 3. Summary of installation procedures being followed, whether they comply with requirements and, if not, what corrective action was taken.
- 4. Results of operational and other tests and a statement of whether observed performance complies with requirements.
- 5. Other required items indicated in individual Specification Sections.
- C. Permits, Licenses, and Certificates: For Owner's records, submit copies of permits, licenses, certifications, inspection reports, releases, jurisdictional settlements, notices, receipts for fee payments, judgments, correspondence, records, and similar documents, established for compliance with standards and regulations bearing on performance of the Work.

1.5 QUALITY ASSURANCE

- A. General: Qualifications paragraphs in this article establish the minimum qualification levels required; individual Specification Sections specify additional requirements.
- B. Manufacturer Qualifications: A firm experienced in manufacturing products or systems similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.
- C. Fabricator Qualifications: A firm experienced in producing products similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.
- D. Installer Qualifications: A firm or individual experienced in installing, erecting, or assembling work similar in material, design, and extent to that indicated for this Project, whose work has resulted in construction with a record of successful in-service performance.
- E. Manufacturer's Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to observe and inspect installation of manufacturer's products that are similar in material, design, and extent to those indicated for this Project.
- F. Preconstruction Testing: Where testing agency is indicated to perform preconstruction testing for compliance with specified requirements for performance and test methods, comply with the following:
 - 1. Contractor responsibilities include the following:
 - a. Provide test specimens representative of proposed products and construction.
 - b. Submit specimens in a timely manner with sufficient time for testing and analyzing results to prevent delaying the Work.
 - c. Build laboratory mockups at testing facility using personnel, products, and methods of construction indicated for the completed Work.
 - d. When testing is complete, remove test specimens, assemblies, and mockups; do not reuse products on Project.

- 2. Testing Agency Responsibilities: Submit a certified written report of each test, inspection, and similar quality-assurance service to Architect, with copy to Contractor. Interpret tests and inspections and state in each report whether tested and inspected work complies with or deviates from the Contract Documents.
- G. Mockups: Before installing portions of the Work requiring mockups, build mockups for each form of construction and finish required to comply with the following requirements, using materials indicated for the completed Work:
 - 1. Build mockups in location and of size indicated or, if not indicated, as directed by Architect.
 - 2. Notify Architectseven days in advance of dates and times when mockups will be constructed.
 - 3. Demonstrate the proposed range of aesthetic effects and workmanship.
 - 4. Obtain Architect's approval of mockups before starting work, fabrication, or construction.
 - a. Allow seven days for initial review and each re-review of each mockup.
 - 5. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
 - 6. Demolish and remove mockups when directed unless otherwise indicated.

1.6 QUALITY CONTROL

- A. Contractor Responsibilities: Tests and inspections not explicitly assigned to Owner are Contractor's responsibility. Perform additional quality-control activities required to verify that the Work complies with requirements, whether specified or not.
 - 1. Where services are indicated as Contractor's responsibility, engage a qualified testing agency to perform these quality-control services.
 - a. Contractor shall not employ same entity engaged by Owner, unless agreed to in writing by Owner.
 - 2. Notify testing agencies at least 24 hours in advance of time when Work that requires testing or inspecting will be performed.
 - 3. Where quality-control services are indicated as Contractor's responsibility, submit a certified written report, in duplicate, of each quality-control service.
 - 4. Testing and inspecting requested by Contractor and not required by the Contract Documents are Contractor's responsibility.
 - 5. Submit additional copies of each written report directly to authorities having jurisdiction, when they so direct.
- B. Manufacturer's Field Services: Where indicated, engage a manufacturer's representative to observe and inspect the Work. Manufacturer's representative's services include examination of substrates and conditions, verification of materials, inspection of completed portions of the Work, and submittal of written reports.

- C. Retesting/Reinspecting: Regardless of whether original tests or inspections were Contractor's responsibility, provide quality-control services, including retesting and reinspecting, for construction that replaced Work that failed to comply with the Contract Documents.
- D. Testing Agency Responsibilities: Cooperate with Architect and Contractor in performance of duties. Provide qualified personnel to perform required tests and inspections.
 - 1. Notify Architect and Contractor promptly of irregularities or deficiencies observed in the Work during performance of its services.
 - 2. Determine the location from which test samples will be taken and in which in-situ tests are conducted.
 - 3. Conduct and interpret tests and inspections and state in each report whether tested and inspected work complies with or deviates from requirements.
 - 4. Submit a certified written report, in duplicate, of each test, inspection, and similar quality-control service through Contractor.
 - 5. Do not release, revoke, alter, or increase the Contract Document requirements or approve or accept any portion of the Work.
 - 6. Do not perform any duties of Contractor.
- E. Associated Services: Cooperate with agencies performing required tests, inspections, and similar quality-control services, and provide reasonable auxiliary services as requested. Notify agency sufficiently in advance of operations to permit assignment of personnel. Provide the following:
 - 1. Access to the Work.
 - 2. Incidental labor and facilities necessary to facilitate tests and inspections.
 - 3. Adequate quantities of representative samples of materials that require testing and inspecting. Assist agency in obtaining samples.
 - 4. Facilities for storage and field curing of test samples.
 - 5. Delivery of samples to testing agencies.
 - 6. Preliminary design mix proposed for use for material mixes that require control by testing agency.
 - 7. Security and protection for samples and for testing and inspecting equipment at Project site.
- F. Coordination: Coordinate sequence of activities to accommodate required quality-assurance and -control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspecting.
 - 1. Schedule times for tests, inspections, obtaining samples, and similar activities.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 TEST AND INSPECTION LOG

- A. Test and Inspection Log: Prepare a record of tests and inspections. Include the following:
 - 1. Date test or inspection was conducted.
 - 2. Description of the Work tested or inspected.
 - 3. Date test or inspection results were transmitted to Architect.
 - 4. Identification of testing agency or special inspector conducting test or inspection.
- B. Maintain log at Project site. Post changes and revisions as they occur. Provide access to test and inspection log for Architect's reference during normal working hours.

3.2 REPAIR AND PROTECTION

- A. General: On completion of testing, inspecting, sample taking, and similar services, repair damaged construction and restore substrates and finishes.
 - 1. Provide materials and comply with installation requirements specified in other Specification Sections or matching existing substrates and finishes. Restore patched areas and extend restoration into adjoining areas with durable seams that are as invisible as possible. Comply with the Contract Document requirements for cutting and patching in Section 01 73 00 "Execution."
- B. Protect construction exposed by or for quality-control service activities.
- C. Repair and protection are Contractor's responsibility, regardless of the assignment of responsibility for quality-control services.

END OF SECTION 01 40 00

SECTION 01 42 00 - REFERENCES

PART 1 - GENERAL

1.1 DEFINITIONS

- A. General: Basic Contract definitions are included in the Conditions of the Contract.
- B. "Approved": When used to convey Architect's action on Contractor's submittals, applications, and requests, "approved" is limited to Architect's duties and responsibilities as stated in the Conditions of the Contract.
- C. "Directed": A command or instruction by Architect. Other terms including "requested," "authorized," "selected," "required," and "permitted" have the same meaning as "directed."
- D. "Indicated": Requirements expressed by graphic representations or in written form on Drawings, in Specifications, and in other Contract Documents. Other terms including "shown," "noted," "scheduled," and "specified" have the same meaning as "indicated."
- E. "Regulations": Laws, ordinances, statutes, and lawful orders issued by authorities having jurisdiction, and rules, conventions, and agreements within the construction industry that control performance of the Work.
- F. "Furnish": Supply and deliver to Project site, ready for unloading, unpacking, assembly, installation, and similar operations.
- G. "Install": Unload, temporarily store, unpack, assemble, erect, place, anchor, apply, work to dimension, finish, cure, protect, clean, and similar operations at Project site.
- H. "Provide": Furnish and install, complete and ready for the intended use.
- I. "Project Site": Space available for performing construction activities. The extent of Project site is shown on Drawings and may or may not be identical with the description of the land on which Project is to be built.

1.2 INDUSTRY STANDARDS

- A. Applicability of Standards: Unless the Contract Documents include more stringent requirements, applicable construction industry standards have the same force and effect as if bound or copied directly into the Contract Documents to the extent referenced. Such standards are made a part of the Contract Documents by reference.
- B. Publication Dates: Comply with standards in effect as of date of the Contract Documents unless otherwise indicated.

- C. Copies of Standards: Each entity engaged in construction on Project should be familiar with industry standards applicable to its construction activity. Copies of applicable standards are not bound with the Contract Documents.
 - 1. Where copies of standards are needed to perform a required construction activity, obtain copies directly from publication source.

1.3 ABBREVIATIONS AND ACRONYMS

- A. Industry Organizations: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities indicated in Gale's "Encyclopedia of Associations: National Organizations of the U.S." or in Columbia Books' "National Trade & Professional Associations of the United States."
- B. Code Agencies: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list.
 - 1. DIN Deutsches Institut f?r Normung e.V.; www.din.de.
 - 2. IAPMO International Association of Plumbing and Mechanical Officials; www.iapmo.org.
 - 3. ICC International Code Council; www.iccsafe.org.
 - 4. ICC-ES ICC Evaluation Service, LLC; www.icc-es.org.
- C. Federal Government Agencies: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list.
 - 1. COE Army Corps of Engineers; www.usace.army.mil.
 - 2. CPSC Consumer Product Safety Commission; www.cpsc.gov.
 - 3. DOC Department of Commerce; National Institute of Standards and Technology; www.nist.gov.
 - 4. DOD Department of Defense; http://dodssp.daps.dla.mil.
 - 5. DOE Department of Energy; www.energy.gov.
 - 6. EPA Environmental Protection Agency; www.epa.gov.
 - 7. FAA Federal Aviation Administration; www.faa.gov.
 - 8. FG Federal Government Publications; www.gpo.gov.
 - 9. GSA General Services Administration; www.gsa.gov.
 - 10. HUD Department of Housing and Urban Development; www.hud.gov.
 - 11. LBL Lawrence Berkeley National Laboratory; Environmental Energy Technologies Division; http://eetd.lbl.gov.
 - 12. OSHA Occupational Safety & Health Administration; www.osha.gov.
 - 13. SD Department of State; www.state.gov.
 - 14. TRB Transportation Research Board; National Cooperative Highway Research Program; www.trb.org.
 - 15. USDA Department of Agriculture; Agriculture Research Service; U.S. Salinity Laboratory; www.ars.usda.gov.
 - 16. USDA Department of Agriculture; Rural Utilities Service; www.usda.gov.

- 17. USDJ Department of Justice; Office of Justice Programs; National Institute of Justice; www.ojp.usdoj.gov.
- 18. USP U.S. Pharmacopeia; www.usp.org.
- 19. USPS United States Postal Service; www.usps.com.
- D. Standards and Regulations: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the standards and regulations in the following list.
 - 1. CFR Code of Federal Regulations; Available from Government Printing Office; www.gpo.gov/fdsys.
 - 2. DOD Department of Defense; Military Specifications and Standards; Available from Department of Defense Single Stock Point; http://dodssp.daps.dla.mil.
 - 3. DSCC Defense Supply Center Columbus; (See FS).
 - 4. FED-STD Federal Standard; (See FS).
 - 5. FS Federal Specification; Available from Department of Defense Single Stock Point; http://dodssp.daps.dla.mil.
 - a. Available from Defense Standardization Program; www.dsp.dla.mil.
 - b. Available from General Services Administration; www.gsa.gov.
 - c. Available from National Institute of Building Sciences/Whole Building Design Guide; www.wbdg.org/ccb.
 - 6. MILSPEC Military Specification and Standards; (See DOD).
 - 7. USAB United States Access Board; www.access-board.gov.
 - 8. USATBCB U.S. Architectural & Transportation Barriers Compliance Board; (See USAB).
- E. State Government Agencies: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list.
 - 1. CBHF; State of California; Department of Consumer Affairs; Bureau of Electronic Appliance and Repair, Home Furnishings and Thermal Insulation; www.bearhfti.ca.gov.
 - 2. CCR; California Code of Regulations; Office of Administrative Law; California Title 24 Energy Code; www.calregs.com.
 - 3. CDHS; California Department of Health Services; (See CDPH).
 - 4. CDPH; California Department of Public Health; Indoor Air Quality Program; www.cal-iaq.org.
 - 5. CPUC; California Public Utilities Commission; www.cpuc.ca.gov.
 - 6. SCAQMD; South Coast Air Quality Management District; www.aqmd.gov.
 - 7. TFS; Texas Forest Service; Forest Resource Development and Sustainable Forestry; http://txforestservice.tamu.edu.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 01 42 00

SECTION 01 60 00 - PRODUCT REQUIREMENTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for selection of products for use in Project; product delivery, storage, and handling; manufacturers' standard warranties on products; special warranties; and comparable products.

1.2 DEFINITIONS

- A. Products: Items obtained for incorporating into the Work, whether purchased for Project or taken from previously purchased stock. The term "product" includes the terms "material," "equipment," "system," and terms of similar intent.
 - 1. Named Products: Items identified by manufacturer's product name, including make or model number or other designation shown or listed in manufacturer's published product literature, that is current as of date of the Contract Documents.
 - 2. New Products: Items that have not previously been incorporated into another project or facility. Products salvaged or recycled from other projects are not considered new products.
 - 3. Comparable Product: Product that is demonstrated and approved through submittal process to have the indicated qualities related to type, function, dimension, in-service performance, physical properties, appearance, and other characteristics that equal or exceed those of specified product.
- B. Basis-of-Design Product Specification: A specification in which a specific manufacturer's product is named and accompanied by the words "basis-of-design product," including make or model number or other designation, to establish the significant qualities related to type, function, dimension, in-service performance, physical properties, appearance, and other characteristics for purposes of evaluating comparable products of additional manufacturers named in the specification.

1.3 ACTION SUBMITTALS

- A. Comparable Product Requests: Submit request for consideration of each comparable product. Identify product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles.
 - 1. Architect's Action: If necessary, Architect will request additional information or documentation for evaluation within one week of receipt of a comparable product request. Architect will notify Contractor of approval or rejection of proposed comparable product request within 15 days of receipt of request, or seven days of receipt of additional information or documentation, whichever is later.

- a. Form of Approval: As specified in Section 01 33 00 "Submittal Procedures."
- b. Use product specified if Architect does not issue a decision on use of a comparable product request within time allocated.
- B. Basis-of-Design Product Specification Submittal: Comply with requirements in Section 01 33 00 "Submittal Procedures." Show compliance with requirements.

1.4 QUALITY ASSURANCE

A. Compatibility of Options: If Contractor is given option of selecting between two or more products for use on Project, select product compatible with products previously selected, even if previously selected products were also options.

1.5 PRODUCT DELIVERY, STORAGE, AND HANDLING

- A. Deliver, store, and handle products using means and methods that will prevent damage, deterioration, and loss, including theft and vandalism. Comply with manufacturer's written instructions.
- B. Delivery and Handling:
 - 1. Schedule delivery to minimize long-term storage at Project site and to prevent overcrowding of construction spaces.
 - 2. Coordinate delivery with installation time to ensure minimum holding time for items that are flammable, hazardous, easily damaged, or sensitive to deterioration, theft, and other losses.
 - 3. Deliver products to Project site in an undamaged condition in manufacturer's original sealed container or other packaging system, complete with labels and instructions for handling, storing, unpacking, protecting, and installing.
 - 4. Inspect products on delivery to determine compliance with the Contract Documents and to determine that products are undamaged and properly protected.
- C. Storage:
 - 1. Store products to allow for inspection and measurement of quantity or counting of units.
 - 2. Store materials in a manner that will not endanger Project structure.
 - 3. Store products that are subject to damage by the elements, under cover in a weathertight enclosure above ground, with ventilation adequate to prevent condensation.
 - 4. Protect foam plastic from exposure to sunlight, except to extent necessary for period of installation and concealment.
 - 5. Comply with product manufacturer's written instructions for temperature, humidity, ventilation, and weather-protection requirements for storage.
 - 6. Protect stored products from damage and liquids from freezing.

1.6 PRODUCT WARRANTIES

- A. Warranties specified in other Sections shall be in addition to, and run concurrent with, other warranties required by the Contract Documents. Manufacturer's disclaimers and limitations on product warranties do not relieve Contractor of obligations under requirements of the Contract Documents.
 - 1. Manufacturer's Warranty: Written warranty furnished by individual manufacturer for a particular product and specifically endorsed by manufacturer to Owner.
 - 2. Special Warranty: Written warranty required by the Contract Documents to provide specific rights for Owner.
- B. Special Warranties: Prepare a written document that contains appropriate terms and identification, ready for execution.
 - 1. Manufacturer's Standard Form: Modified to include Project-specific information and properly executed.
 - 2. Specified Form: When specified forms are included with the Specifications, prepare a written document using indicated form properly executed.
 - 3. Refer to other Sections for specific content requirements and particular requirements for submitting special warranties.
- C. Submittal Time: Comply with requirements in Section 01 77 00 "Closeout Procedures."

PART 2 - PRODUCTS

2.1 PRODUCT SELECTION PROCEDURES

- A. General Product Requirements: Provide products that comply with the Contract Documents, are undamaged and, unless otherwise indicated, are new at time of installation.
 - 1. Provide products complete with accessories, trim, finish, fasteners, and other items needed for a complete installation and indicated use and effect.
 - 2. Standard Products: If available, and unless custom products or nonstandard options are specified, provide standard products of types that have been produced and used successfully in similar situations on other projects.
 - 3. Owner reserves the right to limit selection to products with warranties not in conflict with requirements of the Contract Documents.
 - 4. Where products are accompanied by the term "as selected," Architect will make selection.
 - 5. Descriptive, performance, and reference standard requirements in the Specifications establish salient characteristics of products.
- B. Product Selection Procedures:

- 1. Product: Where Specifications name a single manufacturer and product, provide the named product that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered.
- 2. Manufacturer/Source: Where Specifications name a single manufacturer or source, provide a product by the named manufacturer or source that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered.
- 3. Products:
 - a. Restricted List: Where Specifications include a list of names of both manufacturers and products, provide one of the products listed that complies with requirements. Comparable products or substitutions for Contractor's convenience will be considered.
 - b. Nonrestricted List: Where Specifications include a list of names of both available manufacturers and products, provide one of the products listed, or an unnamed product, that complies with requirements. Comply with requirements in "Comparable Products" Article for consideration of an unnamed product.
- 4. Manufacturers:
 - a. Restricted List: Where Specifications include a list of manufacturers' names, provide a product by one of the manufacturers listed that complies with requirements. Comparable products or substitutions for Contractor's convenience will be considered.
 - b. Nonrestricted List: Where Specifications include a list of available manufacturers, provide a product by one of the manufacturers listed, or a product by an unnamed manufacturer, that complies with requirements. Comply with requirements in "Comparable Products" Article for consideration of an unnamed manufacturer's product.
- 5. Basis-of-Design Product: Where Specifications name a product, or refer to a product indicated on Drawings, and include a list of manufacturers, provide the specified or indicated product or a comparable product by one of the other named manufacturers. Drawings and Specifications indicate sizes, profiles, dimensions, and other characteristics that are based on the product named. Comply with requirements in "Comparable Products" Article for consideration of an unnamed product by one of the other named manufacturers.
- C. Visual Matching Specification: Where Specifications require "match Architect's sample", provide a product that complies with requirements and matches Architect's sample. Architect's decision will be final on whether a proposed product matches.
 - 1. If no product available within specified category matches and complies with other specified requirements, comply with requirements in Section 01 25 00 "Substitution Procedures" for proposal of product.

D. Visual Selection Specification: Where Specifications include the phrase "as selected by Architect from manufacturer's full range" or similar phrase, select a product that complies with requirements. Architect will select color, gloss, pattern, density, or texture from manufacturer's product line that includes both standard and premium items.

2.2 COMPARABLE PRODUCTS

- A. Conditions for Consideration: Architect will consider Contractor's request for comparable product when the following conditions are satisfied. If the following conditions are not satisfied, Architect may return requests without action, except to record noncompliance with these requirements:
 - 1. Evidence that the proposed product does not require revisions to the Contract Documents, that it is consistent with the Contract Documents and will produce the indicated results, and that it is compatible with other portions of the Work.
 - 2. Detailed comparison of significant qualities of proposed product with those named in the Specifications. Significant qualities include attributes such as performance, weight, size, durability, visual effect, and specific features and requirements indicated.
 - 3. Evidence that proposed product provides specified warranty.
 - 4. List of similar installations for completed projects with project names and addresses and names and addresses of architects and owners, if requested.
 - 5. Samples, if requested.

PART 3 - EXECUTION (Not Used)

END OF SECTION 01 60 00

SECTION 01 77 00 - CLOSEOUT PROCEDURES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes administrative and procedural requirements for Contract closeout, including, but not limited to, the following:
 - 1. Substantial Completion procedures.
 - 2. Final completion procedures.
 - 3. Warranties.
 - 4. Final cleaning.
- B. Related Requirements:
 - 1. Section 01 78 23 "Operation and Maintenance Data" for additional operation and maintenance manual requirements.
 - 2. Section 01 78 39 "Project Record Documents" for submitting Record Drawings, Record Specifications, and Record Product Data.
 - 3. Section 01 79 00 "Demonstration and Training" for requirements to train the Owner's maintenance personnel to adjust, operate, and maintain products, equipment, and systems.

1.2 ACTION SUBMITTALS

- A. Contractor's List of Incomplete Items: Initial submittal at Substantial Completion.
- B. Certified List of Incomplete Items: Final submittal at Final Completion.

1.3 CLOSEOUT SUBMITTALS

- A. Certificates of Release: From authorities having jurisdiction.
- B. Certificate of Insurance: For continuing coverage.
- C. Field Report: For pest-control inspection.

1.4 SUBSTANTIAL COMPLETION PROCEDURES

A. Contractor's List of Incomplete Items: Prepare and submit a list of items to be completed and corrected (Contractor's "punch list"), indicating the value of each item on the list.

- B. Submittals Prior to Substantial Completion: Complete the following a minimum of 10days prior to requesting inspection for determining date of Substantial Completion. List items below that are incomplete at time of request.
 - 1. Certificates of Release: Obtain and submit releases from authorities having jurisdiction, permitting Owner unrestricted use of the Work and access to services and utilities. Include occupancy permits, operating certificates, and similar releases.
 - 2. Submit closeout submittals specified in other Division 01 Sections, including Project Record Documents, operation and maintenance manuals, damage or settlement surveys, property surveys, and similar final record information.
 - 3. Submit closeout submittals specified in individual Sections, including specific warranties, workmanship bonds, maintenance service agreements, final certifications, and similar documents.
 - 4. Submit maintenance material submittals specified in individual Sections, including tools, spare parts, extra materials, and similar items, and deliver to location designated by Construction Manager. Label with manufacturer's name and model number.
 - 5. Submit testing, adjusting, and balancing records.
- C. Procedures Prior to Substantial Completion: Complete the following a minimum of 10days prior to requesting inspection for determining date of Substantial Completion. List items below that are incomplete at time of request.
 - 1. Advise Owner of pending insurance changeover requirements.
 - 2. Make final changeover of permanent locks and deliver keys to Owner. Advise Owner's personnel of changeover in security provisions.
 - 3. Complete startup and testing of systems and equipment.
 - 4. Perform preventive maintenance on equipment used prior to Substantial Completion.
 - 5. Instruct Owner's personnel in operation, adjustment, and maintenance of products, equipment, and systems. Submit demonstration and training video recordings specified in Section 01 79 00 "Demonstration and Training."
 - 6. Participate with Owner in conducting inspection and walkthrough with local emergency responders.
 - 7. Terminate and remove temporary facilities from Project site, along with mockups, construction tools, and similar elements.
 - 8. Complete final cleaning requirements.
- D. Inspection: Submit a written request for inspection to determine Substantial Completion a minimum of 10 days prior to date the Work will be completed and ready for final inspection and tests. On receipt of request, Architect and Construction Manager will either proceed with inspection or notify Contractor of unfulfilled requirements. Architect will prepare the Certificate of Substantial Completion after inspection or will notify Contractor of items, either on Contractor's list or additional items identified by Architect, that must be completed or corrected before certificate will be issued.

1.5 FINAL COMPLETION PROCEDURES

A. Submittals Prior to Final Completion: Before requesting final inspection for determining Final Completion, complete the following:

- 1. Submit a final Application for Payment in accordance with Section 01 29 00 "Payment Procedures."
- 2. Certified List of Incomplete Items: Submit certified copy of Architect's Substantial Completion inspection list of items to be completed or corrected (punch list), endorsed and dated by Architect. Certified copy of the list shall state that each item has been completed or otherwise resolved for acceptance.
- 3. Certificate of Insurance: Submit evidence of final, continuing insurance coverage complying with insurance requirements.
- B. Inspection: Submit a written request for final inspection to determine acceptance a minimum of 10 days prior to date the Work will be completed and ready for final inspection and tests. On receipt of request, Architect [and Construction Manager] will either proceed with inspection or notify Contractor of unfulfilled requirements. Architect will prepare a final Certificate for Payment after inspection or will notify Contractor of construction that must be completed or corrected before certificate will be issued.

1.6 LIST OF INCOMPLETE ITEMS

- A. Organization of List: Include name and identification of each space and area affected by construction operations for incomplete items and items needing correction including, if necessary, areas disturbed by Contractor that are outside the limits of construction.
 - 1. Organize list of spaces in sequential order, starting with exterior areas first and proceeding from lowest floor to highest floor, listed by room or space number.
 - 2. Organize items applying to each space by major element, including categories for ceilings, individual walls, floors, equipment, and building systems.
 - 3. Include the following information at the top of each page:
 - a. Project name.
 - b. Date.
 - c. Name of Architect and Construction Manager.
 - d. Name of Contractor.
 - e. Page number.
 - 4. Submit list of incomplete items in the following format:
 - a. PDF Electronic File: Architect, through Construction Manager, will return annotated file. OR
 - b. Web-Based Project Software Upload: Utilize software feature for creating and updating list of incomplete items (punch list).

1.7 SUBMITTAL OF PROJECT WARRANTIES

A. Time of Submittal: Submit written warranties on request of Architect for designated portions of the Work where warranties are indicated to commence on dates other than date of Substantial Completion, or when delay in submittal of warranties might limit Owner's rights under warranty.

- B. Organize warranty documents into an orderly sequence based on the table of contents of Project Manual.
- C. Warranty Electronic File: Provide warranties and bonds in PDF format. Assemble complete warranty and bond submittal package into a single electronic PDF file with bookmarks enabling navigation to each item. Provide bookmarked table of contents at beginning of document.
- D. Warranties in Paper Form:
 - 1. Bind warranties and bonds in heavy-duty, three-ring, vinyl-covered, loose-leaf binders, thickness as necessary to accommodate contents, and sized to receive 8-1/2-by-11-inch paper.
- E. Provide additional copies of each warranty to include in operation and maintenance manuals.

PART 2 - EXECUTION

2.1 FINAL CLEANING

- A. Perform final cleaning. Conduct cleaning and waste-removal operations to comply with local laws and ordinances and Federal and local environmental and antipollution regulations.
- B. Cleaning: Employ experienced workers or professional cleaners for final cleaning. Clean each surface or unit to condition expected in an average commercial building cleaning and maintenance program. Comply with manufacturer's written instructions.
 - 1. Complete the following cleaning operations before requesting inspection for certification of Substantial Completion for entire Project or for a designated portion of Project:
 - a. Clean Project site of rubbish, waste material, litter, and other foreign substances.
 - b. Clean exposed exterior and interior hard-surfaced finishes to a dirt-free condition, free of stains, films, and similar foreign substances. Avoid disturbing natural weathering of exterior surfaces. Restore reflective surfaces to their original condition.
 - c. Remove debris and surface dust from limited-access spaces, including roofs, plenums, shafts, trenches, equipment vaults, manholes, attics, and similar spaces.
 - d. Clean flooring, removing debris, dirt, and staining; clean according to manufacturer's recommendations.
 - e. Vacuum and mop concrete floors.
 - f. Vacuum carpet and similar soft surfaces, removing debris and excess nap; clean according to manufacturer's recommendations if visible soil or stains remain.
 - g. Clean transparent materials, including mirrors and glass in doors and windows. Remove glazing compounds and other noticeable, vision-obscuring materials. Remove labels that are not permanent.
 - h. Wipe surfaces of mechanical and electrical equipment and similar equipment. Remove excess lubrication, paint and mortar droppings, and other foreign substances.
 - i. Clean plumbing fixtures to a sanitary condition, free of stains, including stains resulting from water exposure.

- j. Replace disposable air filters and clean permanent air filters. Clean exposed surfaces of diffusers, registers, and grills.
- k. Clean ducts, blowers, and coils if units were operated without filters during construction or that display contamination with particulate matter on inspection.
- 1. Clean luminaires, lamps, globes, and reflectors to function with full efficiency.
- m. Clean strainers.
- n. Leave Project clean and ready for occupancy.
- C. Construction Waste Disposal: Comply with waste-disposal requirements in Section 01 50 00 "Temporary Facilities and Controls."

2.2 REPAIR OF THE WORK

A. Complete repair and restoration operations required by Section 01 73 00 "Execution" before requesting inspection for determination of Substantial Completion.

END OF SECTION 01 77 00

SECTION 01 78 23 - OPERATION AND MAINTENANCE DATA

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes administrative and procedural requirements for preparing operation and maintenance manuals, including the following:
 - 1. Operation and maintenance documentation directory.
 - 2. Operation manuals for systems, subsystems, and equipment.
 - 3. Product maintenance manuals.
 - 4. Systems and equipment maintenance manuals.

1.2 CLOSEOUT SUBMITTALS

- A. Manual Content: Operations and maintenance manual content is specified in individual Specification Sections to be reviewed at the time of Section submittals. Submit reviewed manual content formatted and organized as required by this Section.
 - 1. Architect will comment on whether content of operations and maintenance submittals are acceptable.
 - 2. Where applicable, clarify and update reviewed manual content to correspond to revisions and field conditions.
- B. Format: Submit operations and maintenance manuals in the following format:
 - 1. PDF electronic file. Assemble each manual into a composite electronically indexed file. Submit on digital media acceptable to Architect.
 - a. Name each indexed document file in composite electronic index with applicable item name. Include a complete electronically linked operation and maintenance directory.
 - b. Enable inserted reviewer comments on draft submittals.
- C. Manual Submittal: Submit each manual in final form prior to requesting inspection for Substantial Completion and at least 15 days before commencing demonstration and training. Architect will return copy with comments.
 - 1. Correct or revise each manual to comply with Architect's comments. Submit copies of each corrected manual within 15 days of receipt of Architect's comments and prior to commencing demonstration and training.

PART 2 - PRODUCTS

2.1 REQUIREMENTS FOR OPERATION AND MAINTENANCE MANUALS

- A. Directory: Prepare a single, comprehensive directory of operation and maintenance data and materials, listing items and their location to facilitate ready access to desired information.
- B. Organization: Unless otherwise indicated, organize each manual into a separate section for each system and subsystem, and a separate section for each piece of equipment not part of a system. Each manual shall contain the following materials, in the order listed:
 - 1. Title page.
 - 2. Table of contents.
 - 3. Manual contents.
- C. Title Page: Include the following information:
 - 1. Subject matter included in manual.
 - 2. Name and address of Project.
 - 3. Name and address of Owner.
 - 4. Date of submittal.
 - 5. Name and contact information for Contractor.
 - 6. Name and contact information for Construction Manager.
 - 7. Name and contact information for Architect.
 - 8. Name and contact information for Commissioning Authority.
 - 9. Names and contact information for major consultants to the Architect that designed the systems contained in the manuals.
 - 10. Cross-reference to related systems in other operation and maintenance manuals.
- D. Table of Contents: List each product included in manual, identified by product name, indexed to the content of the volume, and cross-referenced to Specification Section number in Project Manual.
- E. Manual Contents: Organize into sets of manageable size. Arrange contents alphabetically by system, subsystem, and equipment. If possible, assemble instructions for subsystems, equipment, and components of one system into a single binder.
- F. Manuals, Electronic Files: Submit manuals in the form of a multiple file composite electronic PDF file for each manual type required.
 - 1. Electronic Files: Use electronic files prepared by manufacturer where available. Where scanning of paper documents is required, configure scanned file for minimum readable file size.

2. File Names and Bookmarks: Enable bookmarking of individual documents based on file names. Name document files to correspond to system, subsystem, and equipment names used in manual directory and table of contents. Group documents for each system and subsystem into individual composite bookmarked files, then create composite manual, so that resulting bookmarks reflect the system, subsystem, and equipment names in a readily navigated file tree. Configure electronic manual to display bookmark panel on opening file.

2.2 OPERATION MANUALS

- A. Content: In addition to requirements in this Section, include operation data required in individual Specification Sections and the following information:
 - 1. System, subsystem, and equipment descriptions. Use designations for systems and equipment indicated on Contract Documents.
 - 2. Performance and design criteria if Contractor is delegated design responsibility.
 - 3. Operating standards.
 - 4. Operating procedures.
 - 5. Operating logs.
 - 6. Wiring diagrams.
 - 7. Control diagrams.
 - 8. Piped system diagrams.
 - 9. Precautions against improper use.
 - 10. License requirements including inspection and renewal dates.
- B. Descriptions: Include the following:
 - 1. Product name and model number. Use designations for products indicated on Contract Documents.
 - 2. Manufacturer's name.
 - 3. Equipment identification with serial number of each component.
 - 4. Equipment function.
 - 5. Operating characteristics.
 - 6. Limiting conditions.
 - 7. Performance curves.
 - 8. Engineering data and tests.
 - 9. Complete nomenclature and number of replacement parts.
- C. Operating Procedures: Include the following, as applicable:
 - 1. Startup procedures.
 - 2. Equipment or system break-in procedures.
 - 3. Routine and normal operating instructions.
 - 4. Regulation and control procedures.
 - 5. Instructions on stopping.
 - 6. Normal shutdown instructions.
 - 7. Seasonal and weekend operating instructions.
 - 8. Required sequences for electric or electronic systems.

- 9. Special operating instructions and procedures.
- D. Systems and Equipment Controls: Describe the sequence of operation, and diagram controls as installed.
- E. Piped Systems: Diagram piping as installed, and identify color-coding where required for identification.

2.3 PRODUCT MAINTENANCE MANUALS

- A. Content: Organize manual into a separate section for each product, material, and finish. Include source information, product information, maintenance procedures, repair materials and sources, and warranties and bonds, as described below.
- B. Source Information: List each product included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual.
- C. Product Information: Include the following, as applicable:
 - 1. Product name and model number.
 - 2. Manufacturer's name.
 - 3. Color, pattern, and texture.
 - 4. Material and chemical composition.
 - 5. Reordering information for specially manufactured products.
- D. Maintenance Procedures: Include manufacturer's written recommendations and the following:
 - 1. Inspection procedures.
 - 2. Types of cleaning agents to be used and methods of cleaning.
 - 3. List of cleaning agents and methods of cleaning detrimental to product.
 - 4. Schedule for routine cleaning and maintenance.
 - 5. Repair instructions.
- E. Repair Materials and Sources: Include lists of materials and local sources of materials and related services.
- F. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.

2.4 SYSTEMS AND EQUIPMENT MAINTENANCE MANUALS

A. Content: For each system, subsystem, and piece of equipment not part of a system, include source information, manufacturers' maintenance documentation, maintenance procedures, maintenance and service schedules, spare parts list and source information, maintenance service contracts, and warranty and bond information, as described below.

- B. Source Information: List each system, subsystem, and piece of equipment included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual.
- C. Manufacturers' Maintenance Documentation: Manufacturers' maintenance documentation including the following information for each component part or piece of equipment:
 - 1. Standard maintenance instructions and bulletins.
 - 2. Drawings, diagrams, and instructions required for maintenance, including disassembly and component removal, replacement, and assembly.
 - 3. Identification and nomenclature of parts and components.
 - 4. List of items recommended to be stocked as spare parts.
- D. Maintenance Procedures: Include the following information and items that detail essential maintenance procedures:
 - 1. Test and inspection instructions.
 - 2. Troubleshooting guide.
 - 3. Precautions against improper maintenance.
 - 4. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 - 5. Aligning, adjusting, and checking instructions.
 - 6. Demonstration and training video recording, if available.
- E. Maintenance and Service Schedules: Include service and lubrication requirements, list of required lubricants for equipment, and separate schedules for preventive and routine maintenance and service with standard time allotment.
- F. Spare Parts List and Source Information: Include lists of replacement and repair parts, with parts identified and cross-referenced to manufacturers' maintenance documentation and local sources of maintenance materials and related services.
- G. Maintenance Service Contracts: Include copies of maintenance agreements with name and telephone number of service agent.
- H. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.

PART 3 - EXECUTION

3.1 MANUAL PREPARATION

A. Product Maintenance Manual: Assemble a complete set of maintenance data indicating care and maintenance of each product, material, and finish incorporated into the Work.

- B. Operation and Maintenance Manuals: Assemble a complete set of operation and maintenance data indicating operation and maintenance of each system, subsystem, and piece of equipment not part of a system.
- C. Manufacturers' Data: Where manuals contain manufacturers' standard printed data, include only sheets pertinent to product or component installed. Mark each sheet to identify each product or component incorporated into the Work. If data include more than one item in a tabular format, identify each item using appropriate references from the Contract Documents. Identify data applicable to the Work and delete references to information not applicable.
- D. Drawings: Prepare drawings supplementing manufacturers' printed data to illustrate the relationship of component parts of equipment and systems and to illustrate control sequence and flow diagrams. Coordinate these drawings with information contained in record Drawings to ensure correct illustration of completed installation.
 - 1. Do not use original project record documents as part of operation and maintenance manuals.
- E. Comply with Section 01 77 00 "Closeout Procedures" for schedule for submitting operation and maintenance documentation.

END OF SECTION 01 78 23

SECTION 01 78 39 - PROJECT RECORD DOCUMENTS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes administrative and procedural requirements for project record documents, including the following:
 - 1. Record Drawings.
 - 2. Record Specifications.
 - 3. Record Product Data.
- B. Related Requirements:
 - 1. Section 01 78 23 "Operation and Maintenance Data" for operation and maintenance manual requirements.

1.2 CLOSEOUT SUBMITTALS

- A. Record Drawings: Comply with the following:
 - 1. Number of Copies: Submit copies of record Drawings as follows:
 - a. Initial Submittal:
 - 1) Submit PDF electronic files of scanned record prints.
 - 2) Architect will indicate whether general scope of changes, additional information recorded, and quality of drafting are acceptable.
 - b. Final Submittal:
 - 1) Submit PDF electronic files of scanned record prints.
- B. Record Specifications: Submit annotated PDF electronic files of Project's Specifications, including addenda and contract modifications.
- C. Record Product Data: Submit annotated PDF electronic files and directories of each submittal.

PART 2 - PRODUCTS

2.1 RECORD DRAWINGS

- A. Record Prints: Maintain one set of marked-up paper copies of the Contract Drawings and Shop Drawings, incorporating new and revised Drawings as modifications are issued.
 - 1. Preparation: Mark record prints to show the actual installation where installation varies from that shown originally. Require individual or entity who obtained record data, whether individual or entity is Installer, subcontractor, or similar entity, to provide information for preparation of corresponding marked-up record prints.
 - a. Give particular attention to information on concealed elements that would be difficult to identify or measure and record later.
 - b. Record data as soon as possible after obtaining it.
 - c. Record and check the markup before enclosing concealed installations.
 - 2. Mark the Contract Drawings and Shop Drawings completely and accurately. Use personnel proficient at recording graphic information in production of marked-up record prints.
 - 3. Mark record sets with erasable, red-colored pencil. Use other colors to distinguish between changes for different categories of the Work at same location.
 - 4. Note Construction Change Directive numbers, alternate numbers, Change Order numbers, and similar identification, where applicable.
- B. Format: Identify and date each record Drawing; include the designation "PROJECT RECORD DRAWING" in a prominent location.
 - 1. Record Prints: Organize record prints and newly prepared record Drawings into manageable sets. Bind each set with durable paper cover sheets. Include identification on cover sheets.
 - 2. Format: Annotated PDF electronic file.
 - 3. Identification: As follows:
 - a. Project name.
 - b. Date.
 - c. Designation "PROJECT RECORD DRAWINGS."
 - d. Name of Architect.
 - e. Name of Contractor.

2.2 RECORD SPECIFICATIONS

A. Preparation: Mark Specifications to indicate the actual product installation where installation varies from that indicated in Specifications, addenda, and contract modifications.

- 1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later.
- 2. Mark copy with the proprietary name and model number of products, materials, and equipment furnished, including substitutions and product options selected.
- 3. Record the name of manufacturer, supplier, Installer, and other information necessary to provide a record of selections made.
- 4. Note related Change Orders, record Product Data, and record Drawings where applicable.
- B. Format: Submit record Specifications as annotated PDF electronic file.

2.3 RECORD PRODUCT DATA

- A. Preparation: Mark Product Data to indicate the actual product installation where installation varies substantially from that indicated in Product Data submittal.
 - 1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later.
 - 2. Include significant changes in the product delivered to Project site and changes in manufacturer's written instructions for installation.
 - 3. Note related Change Orders and record Drawings where applicable.
- B. Format: Submit record Product Data as annotated PDF electronic file.

2.4 MISCELLANEOUS RECORD SUBMITTALS

- A. Assemble miscellaneous records required by other Specification Sections for miscellaneous record keeping and submittal in connection with actual performance of the Work. Bind or file miscellaneous records and identify each, ready for continued use and reference.
- B. Format: Submit miscellaneous record submittals as PDF electronic file.

PART 3 - EXECUTION

3.1 RECORDING AND MAINTENANCE

- A. Recording: Maintain one copy of each submittal during the construction period for project record document purposes. Post changes and revisions to project record documents as they occur; do not wait until end of Project.
- B. Maintenance of Record Documents and Samples: Store record documents and Samples in the field office apart from the Contract Documents used for construction. Do not use project record documents for construction purposes. Maintain record documents in good order and in a clean, dry, legible condition, protected from deterioration and loss. Provide access to project record documents for Architect's reference during normal working hours.

SECTION 01 79 00 - DEMONSTRATION AND TRAINING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes administrative and procedural requirements for instructing Owner's personnel, including the following:
 - 1. Demonstration of operation of systems, subsystems, and equipment.
 - 2. Training in operation and maintenance of systems, subsystems, and equipment.
 - 3. Demonstration and training video recordings.

1.2 QUALITY ASSURANCE

A. Instructor Qualifications: A factory-authorized service representative, complying with requirements in Section 01 40 00 "Quality Requirements," experienced in operation and maintenance procedures and training.

1.3 COORDINATION

- A. Coordinate instruction schedule with Owner's operations. Adjust schedule as required to minimize disrupting Owner's operations and to ensure availability of Owner's personnel.
- B. Coordinate content of training modules with content of approved emergency, operation, and maintenance manuals. Do not submit instruction program until operation and maintenance data has been reviewed and approved by Architect.

PART 2 - PRODUCTS

PART 3 - EXECUTION

3.1 PREPARATION

A. Assemble educational materials necessary for instruction, including documentation and training module. Assemble training modules into a training manual organized in coordination with requirements in Section 01 78 23 "Operation and Maintenance Data."

3.2 INSTRUCTION

- A. Engage qualified instructors to instruct Owner's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system.
- B. Scheduling: Provide instruction at mutually agreed on times. For equipment that requires seasonal operation, provide similar instruction at start of each season.
 - 1. Schedule training with Owner with at least seven days' advance notice.
- C. Training Location and Reference Material: Conduct training on-site in the completed and fully operational facility using the actual equipment in-place. Conduct training using final operation and maintenance data submittals.

END OF SECTION 01 79 00

SECTION 02 41 19 - SELECTIVE DEMOLITION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Demolition and removal of selected portions of building or structure.

1.2 DEFINITIONS

- A. Remove: Detach items from existing construction and legally dispose of them off-site unless indicated to be removed and salvaged or removed and reinstalled.
- B. Existing to Remain: Existing items of construction that are not to be permanently removed and that are not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled.

1.3 INFORMATIONAL SUBMITTALS

A. Statement of Refrigerant Recovery: Signed by refrigerant recovery technician.

1.4 QUALITY ASSURANCE

A. Refrigerant Recovery Technician Qualifications: Certified by an EPA-approved certification program.

1.5 FIELD CONDITIONS

- A. Owner will occupy portions of building immediately adjacent to selective demolition area. Conduct selective demolition so Owner's operations will not be disrupted.
- B. Conditions existing at time of inspection for bidding purpose will be maintained by Owner as far as practical.
- C. Notify Architect of discrepancies between existing conditions and Drawings before proceeding with selective demolition.
- D. Hazardous Materials: It is not expected that hazardous materials will be encountered in the Work.
 - 1. Hazardous materials will be removed by Owner before start of the Work.

- 2. If suspected hazardous materials are encountered, do not disturb; immediately notify Architect and Owner. Hazardous materials will be removed by Owner under a separate contract.
- E. Storage or sale of removed items or materials on-site is not permitted.
- F. Utility Service: Maintain existing utilities indicated to remain in service and protect them against damage during selective demolition operations.
 - 1. Maintain fire-protection facilities in service during selective demolition operations.

1.6 WARRANTY

A. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during selective demolition, by methods and with materials so as not to void existing warranties.

PART 2 - PRODUCTS

2.1 PEFORMANCE REQUIREMENTS

- A. Regulatory Requirements: Comply with governing EPA notification regulations before beginning selective demolition. Comply with hauling and disposal regulations of authorities having jurisdiction.
- B. Standards: Comply with ANSI/ASSE A10.6 and NFPA 241.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify that utilities have been disconnected and capped before starting selective demolition operations.
- B. Survey existing conditions and correlate with requirements indicated to determine extent of selective demolition required.
- C. When unanticipated mechanical, electrical, or structural elements that conflict with intended function or design are encountered, investigate and measure the nature and extent of conflict. Promptly submit a written report to Architect.
- D. Perform an engineering survey of condition of building to determine whether removing any element might result in structural deficiency or unplanned collapse of any portion of structure or adjacent structures during selective building demolition operations.

3.2 UTILITY SERVICES AND MECHANICAL/ELECTRICAL SYSTEMS

- A. Existing Services/Systems to Remain: Maintain services/systems indicated to remain and protect them against damage.
 - 1. Comply with requirements for existing services/systems interruptions specified in Section 01 10 00 "Summary."
- B. Existing Services/Systems to Be Removed, Relocated, or Abandoned: Locate, identify, disconnect, and seal or cap off indicated utility services and mechanical/electrical systems serving areas to be selectively demolished.
 - 1. Owner will arrange to shut off indicated services/systems when requested by Contractor.
 - 2. If services/systems are required to be removed, relocated, or abandoned, provide temporary services/systems that bypass area of selective demolition and that maintain continuity of services/systems to other parts of building.
 - 3. Disconnect, demolish, and remove fire-suppression systems, plumbing, and HVAC systems, equipment, and components indicated to be removed.
 - a. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
 - b. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material.
 - c. Equipment to Be Removed: Disconnect and cap services and remove equipment.
 - d. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.
 - e. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner.
 - f. Ducts to Be Removed: Remove portion of ducts indicated to be removed and plug remaining ducts with same or compatible ductwork material.
- C. Refrigerant: Remove refrigerant from mechanical equipment to be selectively demolished according to 40 CFR 82 and regulations of authorities having jurisdiction.

3.3 PREPARATION

- A. Site Access and Temporary Controls: Conduct selective demolition and debris-removal operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.
 - 1. Comply with requirements for access and protection specified in Section 01 50 00 "Temporary Facilities and Controls."
- B. Temporary Facilities: Provide temporary barricades and other protection required to prevent injury to people and damage to adjacent buildings and facilities to remain.

C. Temporary Shoring: Provide and maintain shoring, bracing, and structural supports as required to preserve stability and prevent movement, settlement, or collapse of construction and finishes to remain, and to prevent unexpected or uncontrolled movement or collapse of construction being demolished.

3.4 SELECTIVE DEMOLITION, GENERAL

- A. General: Demolish and remove existing construction only to the extent required by new construction and as indicated. Use methods required to complete the Work within limitations of governing regulations and as follows:
 - 1. Neatly cut openings and holes plumb, square, and true to dimensions required. Use cutting methods least likely to damage construction to remain or adjoining construction. Use hand tools or small power tools designed for sawing or grinding, not hammering and chopping, to minimize disturbance of adjacent surfaces. Temporarily cover openings to remain.
 - 2. Cut or drill from the exposed or finished side into concealed surfaces to avoid marring existing finished surfaces.
 - 3. Do not use cutting torches until work area is cleared of flammable materials. At concealed spaces, such as duct and pipe interiors, verify condition and contents of hidden space before starting flame-cutting operations. Maintain fire watch and portable fire-suppression devices during flame-cutting operations.
 - 4. Locate selective demolition equipment and remove debris and materials so as not to impose excessive loads on supporting walls, floors, or framing.
 - 5. Dispose of demolished items and materials promptly. Comply with requirements in Section 01 74 19 "Construction Waste Management and Disposal."
- B. Existing Items to Remain: Protect construction indicated to remain against damage and soiling during selective demolition. When permitted by Architect, items may be removed to a suitable, protected storage location during selective demolition and cleaned and reinstalled in their original locations after selective demolition operations are complete.

3.5 DISPOSAL OF DEMOLISHED MATERIALS

- A. General: Except for items or materials indicated to be reused, salvaged, reinstalled, or otherwise indicated to remain Owner's property, remove demolished materials from Project site.
 - 1. Do not allow demolished materials to accumulate on-site.
 - 2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.
 - 3. Remove debris from elevated portions of building by chute, hoist, or other device that will convey debris to grade level in a controlled descent.
 - 4. Comply with requirements specified in Section 01 74 19 "Construction Waste Management and Disposal."
- B. Burning: Do not burn demolished materials.

C. Disposal: Transport demolished materials off Owner's property and legally dispose of them.

3.6 CLEANING

A. Clean adjacent structures and improvements of dust, dirt, and debris caused by selective demolition operations. Return adjacent areas to condition existing before selective demolition operations began.

END OF SECTION 02 41 19

SECTION 02 42 96 - HISTORIC REMOVAL AND DISMANTLING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Historic treatment procedures for removal and dismantling work for designated historic spaces, areas, rooms, and surfaces and the following specific work:
 - a. Removal and dismantling of indicated portions of building or structure and debris hauling.
 - b. Removal and dismantling of indicated site elements and debris hauling.
 - c. Salvage of existing items to be reused or recycled.

1.2 DEFINITIONS

- A. Dismantle: To disassemble or detach a historic item from a surface, or a nonhistoric item from a historic surface, using gentle methods and equipment to prevent damage to historic items and surfaces; disposing of items unless indicated to be salvaged or reinstalled.
- B. Existing to Remain: Existing items that are not to be removed or dismantled, except to the degree indicated for performing required Work.
- C. Remove: To take down or detach a nonhistoric item located within a historic space, area, or room, using methods and equipment to prevent damage to historic items and surfaces; disposing of items unless indicated to be salvaged or reinstalled.
- D. Retain: To keep an element or detail secure and intact.
- E. Salvage: To protect removed or dismantled items and deliver them to Owner.

1.3 FIELD CONDITIONS

- A. Conditions existing at time of inspection for bidding purposes will be maintained by Owner as long as practicable.
- B. Notify Architect of discrepancies between existing conditions and Drawings before proceeding with removal and dismantling work.
- C. Hazardous Materials:
 - 1. It is not expected that hazardous materials will be encountered in the Work.
- a. Hazardous materials will be removed by Owner before start of the Work.
- b. If materials suspected of containing hazardous materials are encountered, do not disturb; immediately notify Architect and Owner. Owner will remove hazardous materials under a separate contract.
 - 1) In the case of asbestos, stop work in the area of potential hazard, shut off fans and other air handlers ventilating the area, and rope off area until the questionable material is identified. Resume work in the area of concern after safe working conditions are verified.
- 2. It is unknown whether hazardous materials will be encountered in the Work.
 - a. If materials suspected of containing hazardous materials are encountered, do not disturb; immediately notify Architect and Owner. Owner will remove hazardous materials under a separate contract.
 - 1) In the case of asbestos, stop work in the area of potential hazard, shut off fans and other air handlers ventilating the area, and rope off area until the questionable material is identified. Resume work in the area of concern after safe working conditions are verified.
- D. Storage or sale of removed or dismantled items on-site is not permitted unless otherwise indicated.
- PART 2 PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Preparation for Removal and Dismantling: Examine construction to be removed or dismantled to determine best methods to safely and effectively perform removal and dismantling work.
 - 1. Verify that affected utilities are disconnected and capped.
 - 2. Inventory and record the condition of items to be removed and dismantled for reinstallation or salvage. Enter this information on the inventory of salvaged items.
 - 3. Engineering Survey: Engage a professional engineer to survey condition of building to determine whether removing any element might result in structural deficiency or unplanned collapse of any portion of structure or adjacent structures as a result of removal and dismantling Work.
- B. Perform surveys as the Work progresses to detect hazards resulting from historic removal and dismantling procedures.

3.2 HISTORIC REMOVAL AND DISMANTLING

- A. General: Have removal and dismantling work performed by a qualified historic removal and dismantling specialist.
- B. Anchorages:
 - 1. Remove anchorages associated with removed items.
 - 2. Dismantle anchorages associated with dismantled items.
 - 3. In historic surfaces, patch or repair holes created by anchorage removal or dismantling according to Section that is specific to the historic surface being patched.

END OF SECTION 02 42 96

SECTION 03 30 00 - CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes cast-in-place concrete, including formwork, reinforcement, concrete materials, mixture design, placement procedures, and finishes, for the following:
 - 1. Extent of concrete work is shown in Drawings

1.3 DEFINITIONS

A. Cementitious Materials: Portland cement alone or in combination with one or more of the following: blended hydraulic cement, fly ash and other pozzolans, ground granulated blast-furnace slag, and silica fume; subject to compliance with requirements.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated, including:
 - 1. Mechanical Splices meet strength requirements
- B. Design Mixtures: For each concrete mixture submit mix designs prepared in accordance with ACI 301. Submit alternate design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.
 - 1. Include the following items with each mix design submitted:
 - a. Intended use of the mix
 - b. Concrete compressive strength data used for standard deviation calculations
 - c. History of performance of the mix
 - d. Cement mill test reports
 - e. Mill test reports of fly ash chemical and physical analysis and certification of compliance with ASTM C 618 Class C
 - f. Coarse aggregate gradation, deleterious substances and physical property report (ASTM C 33, class designation)
 - g. Coarse aggregate soundness test reports (ASTM C88)
 - h. Certification aggregate are uniform in quality, gradation, colors and quantity

- i. Fine aggregate gradation, deleterious substances and physical property report (ASTM C 33)
- j. Admixture compatibility certification letter
- k. Admixture Manufacturer's "Product Data Sheets" and "Material Safety Data Sheets"
- 1. Admixture Manufacturer's certification of conformance with appropriate ASTM standards
- 2. Indicate amounts of mixing water to be withheld for later addition at Project site.
- C. Steel Reinforcement Shop Drawings: Placing drawings that detail fabrication, bending, and placement. Include bar sizes, lengths, material, grade, bar schedules, stirrup spacing, bent bar diagrams, bar arrangement, splices and laps, mechanical connections, tie spacing, hoop spacing, and supports for concrete reinforcement.
 - 1. Beams and Walls: ¹/₄" scale elevations of all beams and walls shall be provided with all reinforcing shown on the elevations, not scheduled.
 - 2. Slabs and Mats: Reinforcing for all concrete slabs shall be shown on a floor plan. Reinforcing shall not be scheduled.
 - 3. Slabs and Mats: A support system plan for all slabs shall be provided. Supports for slab top and bottom bars shall be shown in number and location.
 - 4. Sections shall be provided to clearly show bar positions and clearances to forms.
 - 5. On wall sections indicate spacers used to maintain clearances.
 - 6. Shop drawings shall include all details, sections, and installation instructions indicated on the structural drawings that are required by the contractor to place the reinforcement without using the structural drawings.
 - 7. Reinforcement grades shall be indicated on each shop drawing.
- D. Construction Joint Layout: Indicate proposed construction joints required to construct the structure.
 - 1. Location of construction joints is subject to approval of the Engineer.
- E. Concrete curing methods and materials
- F. Cold weather placement procedures
- G. Wet weather protection procedures
- H. Hot weather placement procedures
- I. Prior to making structural repairs, patching materials and method of application

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data.
- B. Welding Certificates.

- C. Material Certificates: For each of the following, signed by manufacturers:
 - 1. Cementitious materials.
 - 2. Admixtures.
 - 3. Steel reinforcement and accessories.
 - 4. Waterstops.
 - 5. Curing compounds.
 - 6. Floor and slab treatments.
 - 7. Bonding agents.
 - 8. Adhesives.
 - 9. Vapor barriers.
 - 10. Joint-filler strips.
 - 11. Repair materials.
- D. Material Test Reports: For the following, from a qualified testing agency, indicating compliance with requirements:
 - 1. Aggregates.
- E. Field quality-control reports.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: A qualified installer who employs on Project personnel qualified as ACI-certified Flatwork Technician and Finisher and a supervisor who is an ACI-certified Concrete Flatwork Technician.
- B. Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment.
 - 1. Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities."
- C. Testing Agency Qualifications: An independent agency, qualified according to ASTM C 1077 and ASTM E 329 for testing indicated.
 - 1. Personnel conducting field tests shall be qualified as ACI Concrete Field Testing Technician, Grade 1, according to ACI CP-1 or an equivalent certification program.
 - 2. Personnel performing laboratory tests shall be ACI-certified Concrete Strength Testing Technician and Concrete Laboratory Testing Technician - Grade I. Testing Agency laboratory supervisor shall be an ACI-certified Concrete Laboratory Testing Technician -Grade II.
- D. Source Limitations: Obtain each type or class of cementitious material of the same brand from the same manufacturer's plant, obtain aggregate from single source, and obtain admixtures from single source from single manufacturer.

- E. Welding Qualifications: Qualify procedures and personnel according to AWS D1.4, "Structural Welding Code Reinforcing Steel."
- F. ACI Publications: Comply with the following unless modified by requirements in the Contract Documents:
 - 1. ACI 301, "Specifications for Structural Concrete,"
 - 2. ACI 117, "Specifications for Tolerances for Concrete Construction and Materials."
- G. Concrete Testing Service: Engage a qualified independent testing agency to perform material evaluation tests and to design concrete mixtures.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Steel Reinforcement: Deliver, store, and handle steel reinforcement to prevent bending and damage.
- B. Waterstops: Store waterstops under cover to protect from moisture, sunlight, dirt, oil, and other contaminants.

PART 2 - PRODUCTS

2.1 FORM-FACING MATERIALS

- A. Provide from material with sufficient thickness to withstand pressure of newly-placed concrete without bow or deflection.
- B. Smooth-Formed Finished Concrete: Form-facing panels that will provide continuous, true, and smooth concrete surfaces. Furnish in largest practicable sizes to minimize number of joints.
 - 1. Plywood, metal, or other approved panel materials.
 - 2. Exterior-grade plywood panels, suitable for concrete forms, complying with DOC PS 1, and as follows:
 - a. High-density overlay, Class 1 or better.
 - b. Medium-density overlay, Class 1 or better; mill-release agent treated and edge sealed.
 - c. Structural 1, B-B or better; mill oiled and edge sealed.
 - d. B-B (Concrete Form), Class 1 or better; mill oiled and edge sealed.
- C. Rough-Formed Finished Concrete: Plywood, lumber, metal, or another approved material. Provide lumber dressed on at least two edges and one side for tight fit.
- D. Void Forms: Biodegradable paper surface, treated for moisture resistance, structurally sufficient to support weight of plastic concrete and other superimposed loads.

- E. Chamfer Strips: Wood, metal, PVC, or rubber strips, 3/4 by 3/4 inch, minimum (or as indicated on Drawings).
- F. Rustication Strips: Wood, metal, PVC, or rubber strips, kerfed for ease of form removal.
- G. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and will not impair subsequent treatments of concrete surfaces.
 - 1. Formulate form-release agent with rust inhibitor for steel form-facing materials.
- H. Form Ties: Factory-fabricated, removable or snap-off metal or glass-fiber-reinforced plastic form ties designed to resist lateral pressure of fresh concrete on forms and to prevent spalling of concrete on removal.
 - 1. Furnish units that will leave no corrodible metal closer than 1 inchto the plane of exposed concrete surface.
 - 2. Furnish ties that, when removed, will leave holes no larger than 1 inch in diameter in concrete surface.
 - 3. Furnish ties with integral water-barrier plates to walls indicated to receive dampproofing or waterproofing.

2.2 STEEL REINFORCEMENT

- A. Reinforcing Bars: ASTM A 615, Grade 60, deformed.
- B. Low-Alloy-Steel Reinforcing Bar (where bars are to be welded to structural steel): ASTM A 706, deformed.
- C. Plain-Steel Welded Wire Reinforcement: ASTM A 1064, plain, fabricated from as-drawn steel wire into flat sheets.

2.3 REINFORCEMENT ACCESSORIES

- A. Joint Dowel Bars: ASTM A 615/A 615M, Grade 60, plain-steel bars, cut true to length with ends square and free of burrs.
- B. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded wire reinforcement in place. Manufacture bar supports from steel wire, plastic, or precast concrete according to CRSI's "Manual of Standard Practice," of greater compressive strength than concrete and as follows:
 - 1. For slabs-on-grade, use supports with sand plates or horizontal runners where base material will not support chair legs.
 - 2. For concrete surfaces exposed to view where legs of wire bar supports contact forms, use CRSI Class 1 plastic-protected steel wire or CRSI Class 2 stainless-steel bar supports.

C. Mechanical splices, as indicated on the Drawings, shall develop in tension at least 125 percent of the specified yield strength.

2.4 CONCRETE MATERIALS

- A. Cementitious Material: Use the following cementitious materials, of the same type, brand, and source, throughout Project:
 - 1. Portland Cement: ASTM C 150, Type I, unless otherwise acceptable to Engineer.
 - 2. Fly Ash: ASTM C 618, Class C.
 - a. Fly ash shall not alter specified levels of air entrainment nor reduce strength requirements for any mix
 - 3. Ground Granulated Blast-Furnace Slag: ASTM C 989, Grade 100 or 120.
 - 4. Silica Fume: ASTM C 1240, amorphous silica.
- B. Normal-Weight Aggregates: ASTM C 33, and as herein specified.
 - 1. Provide aggregates from a single source.
 - 2. Maximum Coarse-Aggregate Size: Per ACI requirements (3/4" nominal maximum).
 - 3. Fine Aggregate: Free of materials with deleterious reactivity to alkali in cement.
 - 4. For exterior exposed surfaces, do not use fine or coarse aggregate containing spalling-causing deleterious substances.
 - 5. Local aggregates not complying with ASTM C 33, but which have been shown by special test or actual service to produce concrete of adequate strength and durability may be used when acceptable to Engineer.
- C. Water: ASTM C 94, Clean, free of oil, acids, alkalis, and organic matter, and potable.

2.5 ADMIXTURES

- A. Admixtures shall be used to provide proper workability, finish-ability, and setting times at low water-cement ratios and to increase compressive strength, of concrete as approved by Engineer. However cement content shall not be reduced.
- B. Air-Entraining Admixture: ASTM C 260.
- C. Chemical Admixtures: Provide admixtures certified by manufacturer to be compatible with other admixtures and that will not contribute water-soluble chloride ions exceeding those permitted in hardened concrete. Do not use calcium chloride or admixtures containing calcium chloride.
 - 1. Water-Reducing Admixture: ASTM C 494, Type A.
 - 2. High-Range, Water-Reducing Admixture: ASTM C 494, Type F or G.
 - 3. Plasticizing and Retarding Admixture: ASTM C 1017, Type I or II.
 - 4. Non-corrosive non-chloride accelerator: ASTM C 494, Type C or E

2.6 WATERSTOPS

- A. Self-Expanding Butyl Strip Waterstops: Manufactured half-circle, rectangular, or trapezoidal strip, butyl rubber with sodium bentonite or other hydrophilic polymers, for adhesive bonding to concrete.
- B. Elements with 2 layers of reinforcing (8" minimum thickness): 3/4" by 1".
- C. Elements with 1 layer of reinforcing (6" minimum thickness): 3/4" by 3/8".
- D. Follow manufacturer's edge distance requirements.

2.7 VAPOR BARRIERS

A. Sheet Vapor Barrier: Provide vapor barrier under slabs-on-grade unless otherwise noted. Unless otherwise directed in Division 7, provide a polyethylene sheet not less than 15 mils thick which is resistant to decay when tested in accordance with ASTM E 1745, Class A. Include manufacturer's recommended adhesive or pressure-sensitive tape.

2.8 CURING MATERIALS

- A. Evaporation Retarder: Waterborne, monomolecular film forming, manufactured for application to fresh concrete.
- B. Absorptive Cover: AASHTO M 182, Class 2, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. when dry.
- C. Moisture-Retaining Cover: ASTM C 171
 - 1. Polyethylene film
 - 2. White burlap-polyethylene sheet.
- D. Water: Potable.
- E. Curing Compounds:
 - 1. Clear, Waterborne, Membrane-Forming Curing and Sealing Compound: ASTM C 1315, Type 1, Class A.

2.9 RELATED MATERIALS

- A. Expansion- and Isolation-Joint-Filler Strips: ASTM D 1751, asphalt-saturated cellulosic fiber.
- B. Self-Leveling Sealant: Multi-component self-leveling polyurethane sealant, ASTM C920, Type M, Grade P, Class 25

- C. BASF MasterSeal SL2 or approved equal.
- D. Bonding Agent: ASTM C 1059/C 1059M, Type II, non-redispersible, acrylic emulsion or styrene butadiene.
- E. Epoxy Bonding Adhesive: ASTM C 881, two-component epoxy resin, capable of humid curing and bonding to damp surfaces, of class suitable for application temperature and of grade to suit requirements, and as follows:
 - 1. Types IV and V, load bearing, for bonding hardened or freshly mixed concrete to hardened concrete.

2.10 GROUT

- A. Non-precision, non-shrink, non-stain, non-metallic grout in strict accordance with Manufacturer's recommendations.
 - 1. ASTM C 1107
 - 2. Color of cured grout shall match surrounding concrete color.

2.11 CONCRETE MIXTURES, GENERAL

- A. Prepare design mixtures for each type and strength of concrete, proportioned on the basis of laboratory trial mixture or field test data, or both, according to ACI 301.
 - 1. Use a qualified independent testing agency for preparing and reporting proposed mixture designs based on laboratory trial mixtures.
- B. Submit each proposed mix design to the Engineer at least 15 days prior to the start of Work. Do not begin concrete production until mixes have been reviewed by Engineer.
- C. Cementitious Materials: Limit percent by weight of total cementitious material weight in mix design as follows:
 - 1. Fly Ash: 20 percent.
 - 2. Combined Fly Ash and Pozzolan: 20 percent.
 - 3. Ground Granulated Blast-Furnace Slag: 50 percent.
 - 4. Combined Fly Ash or Pozzolan and Ground Granulated Blast-Furnace Slag: 50 percent portland cement minimum, with fly ash or pozzolan not exceeding 20 percent.
 - 5. Silica Fume: 10 percent.
 - 6. Combined Fly Ash, Pozzolans, and Silica Fume: 35 percent with fly ash or pozzolans not exceeding 20 percent and silica fume not exceeding 10 percent.
 - 7. Combined Fly Ash or Pozzolans, Ground Granulated Blast-Furnace Slag, and Silica Fume: 50 percent with fly ash or pozzolans not exceeding 20 percent and silica fume not exceeding 10 percent.
 - 8. Weight of fly ash, silica fume, and GGBS additives shall be included with the weight of cement to determine water-cementitious material ratio.

- D. Limit water-soluble, chloride-ion content in hardened concrete to the following percent by weight of cement.
 - 1. Exterior Slabs on Grade: 0.15 percent
 - 2. Unless noted otherwise: 1.00 percent
- E. Admixtures: Use admixtures according to manufacturer's written instructions.
 - 1. Use admixture in concrete, as required, for placement and workability.
 - 2. Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.
 - 3. Use non-chloride accelerating admixture in concrete slabs placed at ambient temperatures below 50°F (10°C).
 - 4. Use water-reducing admixture in pumped concrete, and concrete with a water-cementitious materials ratio below 0.50.
 - 5. Use air-entraining admixture in exposed exterior concrete unless otherwise indicated. Add air-entraining admixture at manufacturer's prescribed rate to result in concrete at point of placement having total air content of 6 percent plus or minus 1 percent.

2.12 CONCRETE MIXTURES FOR BUILDING ELEMENTS

- A. Proportion normal-weight concrete mixtures as specified on Drawings.
- B. Adjustment to Concrete Mixes: Mix design adjustments may be requested by Contractor when characteristics of materials, job conditions, weather, test results, or other circumstances warrant; at no additional cost to Owner and as accepted by Engineer. Laboratory test data for revised mix design and strength results must be submitted to and accepted by Engineer before using in work.

2.13 FABRICATING REINFORCEMENT

A. Fabricate steel reinforcement according to CRSI's "Manual of Standard Practice."

2.14 CONCRETE MIXING

- A. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete according to ASTM C 94, and furnish batch ticket information.
 - 1. All concrete trucks shall not have concrete build-up on drum or have worn fins. Engineer may require inspections to verify conformance to NRMCA Quality Control Manual, Section 3.
 - 2. Time of discharge after batching shall not exceed 90 minutes or be after drum has revolved 300 revolutions, unless otherwise approved by Engineer.
 - 3. When air temperature is between 85 and 90 deg F, reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F, reduce mixing and delivery time to 60 minutes.

- 4. Batch ticket information shall include:
 - a. Type of aggregate
 - b. Total water content
 - c. Water withheld (if any)
 - d. Air Entrainment
 - e. Slump
 - f. Fly ash (if used) content per cubic yard of concrete
 - g. Water-cementitious material ratio
 - h. Water reducing admixture
- B. Slump adjustment
 - 1. Concrete mix designs without any water reducing admixtures shall have a slump as shown on Drawings.
 - 2. ASTM C 143. Contractor will provide slump guidelines adhering to strength and water/cementitious ratio requirements. Mix design shall provide slump for concrete prior to and after addition of superplasticizers.
 - 3. Water is not to be added at site to meet specified slump, unless specifically indicated as being withheld on batch ticket and approved by Engineer.
 - 4. High range water reducing admixtures (superplasticizers), if added at batch plant, may be redosed at job site. Manufacturers should provide a redoseage chart for this purpose. If superplasticizers are added at batch plant, concrete delivery time, placement, and finishing procedures shall account for limited time affect. If superplasticizer is added at site after verification of initial slump, concrete shall be completely retested after proper mixing. All concrete containing superplasticizer shall have a maximum 9" slump unless otherwise approved by Engineer.

PART 3 - EXECUTION

3.1 FORMWORK

- A. Design, erect, shore, brace, and maintain formwork, according to ACI 301, to support vertical, lateral, static, and dynamic loads, and construction loads that might be applied, until structure can support such loads.
- B. Construct formwork so concrete members and structures are of size, shape, alignment, elevation, and position indicated, within tolerance limits of ACI 117.
- C. Limit concrete surface irregularities, designated by ACI 347 as abrupt or gradual, as follows:
 - 1. Class A, 1/8 inchfor smooth-formed finished surfaces.
 - 2. Class B, 1/4 inchfor rough-formed finished surfaces.
- D. Construct forms tight enough to prevent loss of concrete mortar.

- E. Fabricate forms for easy removal without hammering or prying against concrete surfaces. Provide crush or wrecking plates where stripping may damage cast concrete surfaces. Provide top forms for inclined surfaces steeper than 1.5 horizontal to 1 vertical.
 - 1. Install keyways, reglets, recesses, and the like, for easy removal.
 - 2. Do not use rust-stained steel form-facing material.
- F. Set edge forms, bulkheads, and intermediate screed strips for slabs to achieve required elevations and slopes in finished concrete surfaces. Provide and secure units to support screed strips; use strike-off templates or compacting-type screeds.
- G. Provide temporary openings for cleanouts and inspection ports where interior area of formwork is inaccessible. Close openings with panels tightly fitted to forms and securely braced to prevent loss of concrete mortar. Locate temporary openings in forms at inconspicuous locations.
- H. Chamfer exterior corners and edges of permanently exposed concrete. Use 3/4" chamfer unless otherwise indicated.
- I. Form openings, chases, offsets, sinkages, keyways, reglets, blocking, screeds, and bulkheads required in the Work. Determine sizes and locations from trades providing such items.
- J. Clean forms and adjacent surfaces to receive concrete. Remove chips, wood, sawdust, dirt, and other debris just before placing concrete.
- K. Retighten forms and bracing before placing concrete, as required, to prevent mortar leaks and maintain proper alignment.
- L. Coat contact surfaces of forms with form-release agent, according to manufacturer's written instructions, before placing reinforcement.

3.2 EMBEDDED ITEMS

- A. Coordinate Work with other trades to allow reasonable time to set sleeves, inserts, and other accessories.
- B. Place and secure anchorage devices and other embedded items required for adjoining work that is attached to or supported by cast-in-place concrete. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 1. Install anchor rods, accurately located, to elevations required and complying with tolerances in Section 7.5 of AISC's "Code of Standard Practice for Steel Buildings and Bridges."

3.3 REMOVING AND REUSING FORMS

- A. General: Formwork for sides of beams, walls, columns, and similar parts of the Work that does not support weight of concrete may be removed after cumulatively curing at not less than 50 deg F for 24 hours after placing concrete. Concrete has to be hard enough to not be damaged by form-removal operations and curing and protection operations need to be maintained.
 - 1. Leave formwork for beam soffits, joists, slabs, and other structural elements that supports weight of concrete in place until concrete has achieved at least 70 percent of its 28-day design compressive strength.
 - 2. Remove forms only if shores have been arranged to permit removal of forms without loosening or disturbing shores.
- B. Clean and repair surfaces of forms to be reused in the Work. Split, frayed, delaminated, or otherwise damaged form-facing material will not be acceptable for exposed surfaces. Apply new form-release agent.
- C. When forms are reused, clean surfaces, remove fins and laitance, and tighten to close joints. Align and secure joints to avoid offsets. Do not use patched forms for exposed concrete surfaces unless approved by Architect.

3.4 VAPOR BARRIERS

- A. Sheet Vapor Barriers: Place, protect, and repair sheet vapor barrier according to ASTM E 1643 and manufacturer's written instructions.
 - 1. Lap joints 6 inches and seal with manufacturers recommended tape.
 - 2. Seal around all pipe penetrations and any other tears, penetrations, or holes in the vapor barrier per the manufacturer's recommendations.
 - 3. Terminate perimeter of vapor barrier at the perimeter foundation or grade wall. Turn vapor barrier up and seal to the concrete foundation or grade wall using a tape or termination bar. The method of termination shall be per the manufacturer's recommendations and shall be approved by the Architect.

3.5 STEEL REINFORCEMENT

- A. General: Comply with CRSI's "Manual of Standard Practice" for placing reinforcement.
 - 1. Do not cut or puncture vapor barrier. Repair damage and reseal vapor barrier before placing concrete.
- B. Clean reinforcement of loose rust and mill scale, earth, ice, and other foreign materials that would reduce bond to concrete.

- C. Accurately position, support, and secure reinforcement against displacement. Locate and support reinforcement with bar supports to maintain minimum concrete cover. Do not tack weld crossing reinforcing bars.
 - 1. Weld reinforcing bars, only where specifically shown on Drawings, according to AWS D1.4.
- D. Set wire ties with ends directed into concrete, not toward exposed concrete surfaces.
- E. Install welded wire reinforcement in longest practicable lengths on bar supports spaced to minimize sagging. Lap edges and ends of adjoining sheets at least one mesh spacing. Offset laps of adjoining sheet widths to prevent continuous laps in either direction. Lace overlaps with wire.

3.6 JOINTS

- A. General: Construct joints true to line with faces perpendicular to surface plane of concrete.
- B. Construction Joints: Install so strength and appearance of concrete are not impaired, at locations indicated or as approved by Engineer.
 - 1. Place joints perpendicular to main reinforcement. Continue reinforcement across construction joints unless otherwise indicated. Do not continue reinforcement through sides of strip placements of floors and slabs.
 - 2. Form keyed joints in construction joints in walls, slabs, and as indicated on Drawings. Embed keys at least 1-1/2 inches into concrete.
 - 3. Locate joints for beams, slabs, joists, and girders in the middle third of spans. Offset joints in girders a minimum distance of twice the beam width from a beam-girder intersection.
 - 4. Locate horizontal joints in walls and columns at underside of floors, slabs, beams, and girders and at the top of footings or floor slabs.
 - 5. Space vertical joints in walls as indicated or approved by Engineer. Locate joints beside piers integral with walls, near corners, and in concealed locations where possible.
 - 6. Use a bonding agent or epoxy bonding agent at locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.
- C. Contraction (Control) Joints in Slabs-on-Grade: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of concrete thickness as follows:
 - 1. Exterior Slabs: Tooled Joints: Form contraction joints after initial floating by grooving and finishing each edge of joint to a radius of 1/8 inch. Repeat grooving of contraction joints after applying surface finishes. Eliminate groover tool marks on concrete surfaces.
 - 2. Interior Slabs: Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch-wide joints into concrete when cutting action will not tear, abrade, or otherwise damage surface and before concrete develops random contraction cracks.
 - 3. Install elastomeric sealants when temperature is in the lower third of temperature range recommended by manufacturer for installation.

- 4. Joint sealant manufacturers include:
 - a. Dow Corning Corp. (Midland, Michigan)
 - b. General Electric Co. (Waterford, N.Y.)
 - c. Trenco, Inc. (Cleveland, Ohio)
 - d. W.R. Meadows, Inc. (Elgin, Illinois)
- D. Isolation Joints in Slabs-on-Grade: After removing formwork, install joint-filler strips at slab junctions with vertical surfaces, such as column pedestals, foundation walls, grade beams, and other locations, as indicated.
 - 1. Extend joint-filler strips full width and depth of joint, terminating flush with finished concrete surface unless otherwise indicated.
 - 2. Terminate full-width joint-filler strips not less than 1/2 inchor more than 1 inch below finished concrete surface where joint sealants are indicated.
 - 3. Install joint-filler strips in lengths as long as practicable. Where more than one length is required, lace or clip sections together.
- E. Doweled Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or asphalt coat one-half of dowel length to prevent concrete bonding to one side of joint.

3.7 WATERSTOPS

A. Self-Expanding Strip Waterstops: Install in construction joints and at other locations indicated, according to manufacturer's written instructions, adhesive bonding, mechanically fastening, and firmly pressing into place. Install in longest lengths practicable.

3.8 CONCRETE PLACEMENT

- A. General: Comply with ACI 304 "Recommended Practice for Measuring, Mixing, Transporting, and Placing Concrete," and as herein specified.
- B. Before placing concrete, verify that installation of formwork, reinforcement, and embedded items is complete and that required inspections have been performed.
- C. Do not add water to concrete during delivery, at Project site, or during placement unless approved by Engineer.
- D. Before test sampling and placing concrete, water may be added at Project site, subject to limitations of ACI 301.
 - 1. Do not add water to concrete after adding high-range water-reducing admixtures to mixture.
- E. Deposit concrete continuously in one layer or in horizontal layers of such thickness that no new concrete will be placed on concrete that has hardened enough to cause seams or planes of weakness. If a section cannot be placed continuously, provide construction joints as indicated. Deposit concrete to avoid segregation.

- 1. Place concrete in forms in horizontal layers not deeper than 24" and in a manner to avoid inclined construction joints. Where placement consists of several layers, place each layer while preceding layer is still plastic to avoid cold joints.
- 2. Deposit concrete in horizontal layers of depth to not exceed formwork design pressures and in a manner to avoid inclined construction joints.
- 3. Consolidate placed concrete with mechanical vibrating equipment according to ACI 301.
- 4. Do not use vibrators to transport concrete inside forms. Insert and withdraw vibrators vertically at uniformly spaced locations to rapidly penetrate placed layer and at least 6 inches into preceding layer. Do not insert vibrators into lower layers of concrete that have begun to lose plasticity. At each insertion, limit duration of vibration to time necessary to consolidate concrete and complete embedment of reinforcement and other embedded items without causing mixture constituents to segregate.
- F. Deposit and consolidate concrete for floors and slabs in a continuous operation, within limits of construction joints, until placement of a panel or section is complete.
 - 1. Consolidate concrete during placement operations so concrete is thoroughly worked around reinforcement and other embedded items and into corners.
 - 2. Maintain reinforcement in position on chairs during concrete placement.
 - 3. Screed slab surfaces with a straightedge and strike off to correct elevations.
 - 4. Slope surfaces uniformly to drains where required.
 - 5. Begin initial floating using bull floats or darbies to form a uniform and open-textured surface plane, before excess bleedwater appears on the surface. Do not further disturb slab surfaces before starting finishing operations.
- G. Cold-Weather Placement: Comply with ACI 306.1 and as follows. Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing actions, or low temperatures.
 - 1. When average high and low temperature is expected to fall below 40 deg Ffor three successive days, maintain delivered concrete mixture temperature within the temperature range required by ACI 301.
 - 2. Do not use frozen materials or materials containing ice or snow. Do not place concrete on frozen subgrade or on subgrade containing frozen materials.
 - 3. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in mixture designs.
 - 4. Record air temperature no less than twice per 24 hour period.
 - 5. Cast expendable thermostats or thermo-couplers in concrete at a rate of at least one per 100 cubic yards of concrete placed for supported structure. Monitor internal temperature of concrete at twelve hour maximum intervals throughout the curing process.
 - 6. Specified non-corrosive accelerator may be used.
 - 7. Do not place concrete unless air temperature is at least 20° F and rising.
 - 8. Use evaporation retarder or water fog after finishing to assure that plastic shrinkage cracking of concrete surface does not occur.
 - 9. Cure shall consist of visqueen and insulated blankets placed on slab as soon as possible after concrete will support them without deformation.
 - 10. Do not wet cure concrete placed under cold weather conditions.
 - 11. Curing of supported slabs (continuous presence of visqueen and blankets) shall be maintained no less than 10 days.

- 12. Measures will be required to ensure that the formwork and concrete do not freeze during the curing process.
- H. Hot-Weather Placement: Comply with ACI 305 and as follows:
 - 1. Maintain concrete temperature below 90 deg Fat time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated to total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
 - 2. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade uniformly moist without standing water, soft spots, or dry areas.
 - 3. Cover reinforcing steel with water-soaked burlap if it becomes too hot, so that steel temperature will not exceed the ambient air temperature immediately before embedment in concrete.
 - 4. Protect flatwork during finishing operations as follows:
 - a. Immediately following screeding, apply an evaporator retarding agent in accordance with recommendations of Manufacturer. Additional applications of evaporation retarding agent may be required.
 - b. Continuously fog spray air above slab between finishing operations.
 - c. Cover concrete with an approved moisture-retaining cover as soon as concrete will support it without deformation. Keep mats constantly wet for 7 days minimum. Leave mats in place for 3 additional days after discontinuing wetting process.

3.9 FINISHING FORMED SURFACES

- A. Rough-Formed Finish: As-cast concrete texture imparted by form-facing material with the holes and defects repaired and patched. Remove fins and other projections that exceed specified limits on formed-surface irregularities.
 - 1. Apply to concrete surfaces not exposed to view.
- B. Smooth-Formed Finish: As-cast concrete texture imparted by form-facing material, arranged in an orderly and symmetrical manner with a minimum of seams. Repair and patch tie holes and defects. Remove fins and other projections that exceed specified limits on formed-surface irregularities.
 - 1. Apply to concrete surfaces exposed to view, to receive a rubbed finish, to be covered with a coating or covering material applied directly to concrete.
- C. Rubbed Finish: Apply the following to vertical surfaces of smooth-formed finished as-cast concrete where exposed to view:
 - 1. Smooth-Rubbed Finish: Not later than one day after form removal, moisten concrete surfaces and rub with carborundum brick or another abrasive until producing a uniform color and texture. Do not apply cement grout other than that created by the rubbing process.

D. Related Unformed Surfaces: At tops of walls, horizontal offsets, and similar unformed surfaces adjacent to formed surfaces, strike off smooth and finish with a texture matching adjacent formed surfaces. Continue final surface treatment of formed surfaces uniformly across adjacent unformed surfaces unless otherwise indicated.

3.10 FINISHING FLOORS AND SLABS

- A. General: Comply with ACI 302.1R recommendations for screeding, restraightening, and finishing operations for concrete surfaces. Do not wet concrete surfaces.
- B. Float Finish: Consolidate surface with power-driven floats or by hand floating if area is small or inaccessible to power driven floats. Restraighten, cut down high spots, and fill low spots. Repeat float passes and restraightening until surface is left with a uniform, smooth, granular texture.
 - 1. Apply float finish to surfaces to receive trowel finish, and to be covered with fluid-applied or sheet waterproofing, built-up or membrane roofing, or sand-bed terrazzo.
- C. Trowel Finish: After applying float finish, apply first troweling and consolidate concrete by hand or power-driven trowel. Continue troweling passes and restraighten until surface is free of trowel marks and uniform in texture and appearance. Grind smooth any surface defects that would telegraph through applied coatings or floor coverings.
 - 1. Apply a trowel finish to surfaces exposed to view, and to be covered with resilient flooring, carpet, ceramic or quarry tile set over a cleavage membrane, paint, or another thin-film-finish coating system.
- D. Trowel and Fine-Broom Finish: Apply a first trowel finish to surfaces where ceramic or quarry tile is to be installed by either thickset or thin-set method. While concrete is still plastic, slightly scarify surface with a fine broom.
- E. Broom Finish: Apply a broom finish to exterior concrete platforms, steps, ramps, and elsewhere as indicated.
 - 1. Immediately after float finishing, slightly roughen trafficked surface by brooming with fiber-bristle broom perpendicular to main traffic route. Coordinate required final finish with Architect before application.

3.11 MISCELLANEOUS CONCRETE ITEMS

A. Filling In: Fill in holes and openings left in concrete structures after work of other trades is in place unless otherwise indicated. Mix, place, and cure concrete, as specified, to blend with in-place construction. Provide other miscellaneous concrete filling indicated or required to complete the Work.

- B. Curbs: Provide monolithic finish to interior curbs by stripping forms while concrete is still green and by steel-troweling surfaces to a hard, dense finish with corners, intersections, and terminations slightly rounded.
- C. Equipment Bases and Foundations:
 - 1. Coordinate sizes and locations of concrete bases with actual equipment provided.
 - 2. Minimum Compressive Strength: 4000 psiat 28 days.
 - 3. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inchcenters around the full perimeter of concrete base.
 - 4. For supported equipment, install anchor bolts per supplier requirements.
 - 5. Prior to pouring concrete, place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 6. Cast anchor-bolt insert into bases. Install anchor bolts to elevations required for proper attachment to supported equipment.
- D. Grout base plates and foundations as indicated, using specified non-shrink grout. Use non-metallic grout for exposed conditions, unless otherwise indicated.

3.12 CONCRETE PROTECTING AND CURING

- A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures. Curing shall maintain moisture content and temperature to insure strength gain and prevent undesirable cracking, dusting, scaling and crazing. Comply with ACI 306.1 for cold-weather protection and ACI 305 for hot-weather protection during curing.
- B. Evaporation Retarder: Apply evaporation retarder to unformed concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x hbefore and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete, but before float finishing.
- C. Formed Surfaces: Cure formed concrete surfaces, including underside of beams, supported slabs, and other similar surfaces. If forms remain during curing period, moist cure after loosening forms. If removing forms before end of curing period, continue curing for the remainder of the curing period.
- D. Unformed Surfaces: Begin curing immediately after finishing concrete. Cure unformed surfaces, including floors and slabs, concrete floor toppings, and other surfaces.
- E. Cure concrete according to ACI 308.1, by one or a combination of the following methods:
 - 1. Moisture Curing: Keep surfaces continuously moist for not less than seven days with the following materials:
 - a. Water.
 - b. Continuous water-fog spray.
 - c. Absorptive cover, water saturated, and kept continuously wet. Cover concrete surfaces and edges with 12-inch lap over adjacent absorptive covers.

- 2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches, and sealed by waterproof tape or adhesive. Cure for not less than seven days. Immediately repair any holes or tears during curing period using cover material and waterproof tape.
 - a. Moisture cure or use moisture-retaining covers to cure concrete surfaces to receive floor coverings.
 - b. Moisture cure or use moisture-retaining covers to cure concrete surfaces to receive penetrating liquid floor treatments.
 - c. Cure concrete surfaces to receive floor coverings with either a moisture-retaining cover or a curing compound that the manufacturer certifies will not interfere with bonding of floor covering used on Project.
- 3. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period.
 - a. Removal: After curing period has elapsed, remove curing compound without damaging concrete surfaces by method recommended by curing compound manufacturer unless manufacturer certifies curing compound will not interfere with bonding of floor covering used on Project.
- 4. Curing and Sealing Compound: Apply uniformly to exterior slabs and curbs in a continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Repeat process 24 hours later and apply a second coat. Maintain continuity of coating and repair damage during curing period.
- 5. Curing methods shall be compatible with slab finishes to be applied at a later date. Verify with floor finish and Architect prior to use.

3.13 JOINT FILLING

- A. Prepare, clean, and install joint filler according to manufacturer's written instructions.
 - 1. Do not fill joints until construction traffic has permanently ceased.
- B. Remove dirt, debris, saw cuttings, curing compounds, and sealers from joints; leave contact faces of joint clean and dry.
- C. Install joint filler full depth in saw-cut joints and at least 2 inchesdeep in formed joints. Overfill joint and trim joint filler flush with top of joint after hardening.

3.14 CONCRETE SURFACE REPAIRS

- A. Defective Concrete: Repair and patch defective areas when approved by Engineer/Architect. Remove and replace concrete that cannot be repaired and patched to Engineer's/Architect's approval.
- B. Patching Mortar: Mix dry-pack patching mortar, consisting of one part portland cement to two and one-half parts fine aggregate passing a No. 16 sieve, using only enough water for handling and placing.
- C. Repairing Formed Surfaces: Surface defects include color and texture irregularities, cracks, spalls, air bubbles, honeycombs, rock pockets, fins and other projections on the surface, and stains and other discolorations that cannot be removed by cleaning.
 - 1. Immediately after form removal, cut out honeycombs, rock pockets, and voids more than 1/2 inch in any dimension to solid concrete. Limit cut depth to 3/4 inch. Make edges of cuts perpendicular to concrete surface. Clean, dampen with water, and brush-coat holes and voids with bonding agent. Fill and compact with patching mortar before bonding agent has dried. Fill form-tie voids with patching mortar or cone plugs secured in place with bonding agent.
 - 2. Repair defects on surfaces exposed to view by blending white portland cement and standard portland cement so that, when dry, patching mortar will match surrounding color. Patch a test area at inconspicuous locations to verify mixture and color match before proceeding with patching. Compact mortar in place and strike off slightly higher than surrounding surface.
 - 3. Repair defects on concealed formed surfaces that affect concrete's durability and structural performance as determined by Engineer.
- D. Repairing Unformed Surfaces: Test unformed surfaces, such as floors and slabs, for finish and verify surface tolerances specified for each surface. Correct low and high areas. Test surfaces sloped to drain for trueness of slope and smoothness; use a sloped template.
 - 1. Repair finished surfaces containing defects. Surface defects include spalls, popouts, honeycombs, rock pockets, crazing and cracks in excess of 0.01 inch wide or that penetrate to reinforcement or completely through unreinforced sections regardless of width, and other objectionable conditions.
 - 2. After concrete has cured at least 14 days, correct high areas by grinding.
 - 3. Correct localized low areas during or immediately after completing surface finishing operations by cutting out low areas and replacing with patching mortar. Finish repaired areas to blend into adjacent concrete.
 - 4. Correct other low areas scheduled to receive floor coverings with a repair underlayment. Prepare, mix, and apply repair underlayment and primer according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface. Feather edges to match adjacent floor elevations.
 - 5. Correct other low areas scheduled to remain exposed with a repair topping. Cut out low areas to ensure a minimum repair topping depth of 1/4 inch to match adjacent floor elevations. Prepare, mix, and apply repair topping and primer according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface.

- 6. Repair defective areas, except random cracks and single holes 1 inchor less in diameter, by cutting out and replacing with fresh concrete. Remove defective areas with clean, square cuts and expose steel reinforcement with at least a 3/4-inchclearance all around. Dampen concrete surfaces in contact with patching concrete and apply bonding agent. Mix patching concrete of same materials and mixture as original concrete except without coarse aggregate. Place, compact, and finish to blend with adjacent finished concrete. Cure in same manner as adjacent concrete.
- 7. Repair random cracks and single holes 1 inchor less in diameter with patching mortar. Groove top of cracks and cut out holes to sound concrete and clean off dust, dirt, and loose particles. Dampen cleaned concrete surfaces and apply bonding agent. Place patching mortar before bonding agent has dried. Compact patching mortar and finish to match adjacent concrete. Keep patched area continuously moist for at least 72 hours.
- E. Perform structural repairs of concrete, subject to Engineer's approval, using epoxy adhesive and patching mortar.
- F. Repair materials and installation not specified above may be used, subject to Engineer's approval.

3.15 FIELD QUALITY CONTROL

- A. Testing and Inspecting: Unless provided in other applicable portions of these specifications, the Contractor will engage a qualified testing and inspecting agency to perform field tests and inspections and prepare test reports.
- B. Inspections:
 - 1. Steel reinforcement size, quantity and placement, including presence of proper reinforcement supports.
 - 2. Steel reinforcement welding, where permitted by Engineer of Record.
 - 3. Verification of use of required design mixture.
 - 4. Concrete placement, including conveying and depositing.
 - 5. Curing procedures and maintenance of curing temperature.
- C. Concrete Tests: Testing of composite samples of fresh concrete obtained according to ASTM C 172 shall be performed according to the following requirements:
 - 1. Testing Frequency: Obtain one composite sample for each day's pour of each concrete mixture exceeding 5 cu. yd, but less than 25 cu. yd., plus one set for each additional 50 cu. yd. or fraction thereof.
 - a. When frequency of testing will provide fewer than five compressive-strength tests for each concrete mixture, testing shall be conducted from at least five randomly selected batches or from each batch if fewer than five are used.
 - 2. Slump: ASTM C 143; one test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture. Perform additional tests when concrete consistency appears to change.

- 3. Air Content: ASTM C 231, pressure method, for normal-weight concrete; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture.
- 4. Concrete Temperature: ASTM C 1064; one test hourly when air temperature is 40 deg F and below and when 80 deg F and above, and one test for each composite sample.
- 5. Compression Test Specimens: ASTM C 31.
 - a. Cast and laboratory cure two sets of two standard cylinder specimens for each composite sample.
 - b. Cast and field cure two sets of two standard cylinder specimens for each composite sample.
- 6. Compressive-Strength Tests: ASTM C 39; test one set of two laboratory-cured specimens at 7 days and one set of two specimens at 28 days.
 - a. Test one set of two field-cured specimens at 7 days and one set of two specimens at 28 days.
 - b. A compressive-strength test shall be the average compressive strength from a set of two specimens obtained from same composite sample and tested at age indicated.
- 7. When strength of field-cured cylinders is less than 85 percent of companion laboratory-cured cylinders, Contractor shall evaluate operations and provide corrective procedures for protecting and curing in-place concrete.
- 8. Strength of each concrete mixture will be satisfactory if every average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi.
- 9. Test results shall be reported in writing to Engineer, concrete manufacturer, and Contractor within 48 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mixture proportions and materials, compressive breaking strength, and type of break for both 7- and 28-day tests.
- 10. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by Engineer but will not be used as sole basis for approval or rejection of concrete.
- 11. Additional Tests: Testing and inspecting agency shall make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by Engineer. Testing and inspecting agency may conduct tests to determine adequacy of concrete by cored cylinders complying with ASTM C 42 or by other methods as directed by Engineer.
- 12. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.
- 13. Correct deficiencies in the Work that test reports and inspections indicate do not comply with the Contract Documents.

END OF SECTION 03 30 00

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes products and procedure for multiple step concrete polishing process for designated area as specified herein as indicated on drawings.

1.2 SUBMITTALS

- A. Product Data: Manufacturer[™]s technical literature for each product indicated, specified, or required.
- B. Samples: For each type of exposure, finish or color.

1.3 QUALITY ASSURANCE

- A. Field Sample Panels: After approval of samples, produce field sample panels to demonstrate range of selections made under sample submittals. Produce full-scale panels to demonstrate the expected range of finish, color, and appearance variations.
 - 1. Locate panel as directed by the Architect in storage room or mechanical space that will not be part of the Event Space.
 - 2. Provide at least one joint to demonstrate the staining & joint construction.
 - 3. Maintain field sample panels during construction in an undisturbed location a standard for judging completed work.
- B. Polisher Qualifications: Company experienced in performing work similar is design, products, and extent to scope of this Project; with a record of successful in-service performance; and with sufficient production capability, facilities, and personnel to product specified work.
 - 1. Manufacturer Qualification: Approved by manufacturer to apply liquid applied products.

1.4 FIELD CONDITIONS

- A. Damage and Stain Prevention: Take precautions to prevent damage and staining of concrete surfaces to be polished.
 - 1. Prohibit improper application of liquid membrane forming curing compounds, vehicle's parking over the concrete surface, pipe-cutting operations over concrete surface, storage of items on concrete less than 28 days old, petroleum, oil, hydraulic fluid, and acids as these may all affect final finish of floor treatment.

B. All flooring to be polished as noted on prints. All polishing to be completed within ¹/₄^{TMTM} of wall surface with expectation that floor base will cover this unpolished area. Any areas needed to be polished closer than ¹/₄•to be noted. All inside corners to be completed with an oscillating multi-tool fitted with abrasives to achieve similar results in all hard to reach areas.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURES

- A. Basis of Design: for products and materials specified from Select Step Polished Concrete Flooring System installed by Dancer Concrete Design, Fort Wayne, Indiana, 260-748-2252, nickdancer@dancerconcrete.com, or approved equal. Products of the manufactures are approved provided compliance with all technical requirements as specified herein:
 - 1. Ameripolish, Ameripolish Polishing System, Lowell, Arizona.
 - 2. L &M Construction Chemicals, Permashine Polishing System, Bethany, Connecticut

2.2 LIQUID FLOOR TREATMENTS

- A. Penetrating Liquid Floor Treatments for Polished Concrete, Densifier: Clear, waterborne solution of inorganic silicate or siliconate materials and proprietary components; odorless, that penetrates, hardens, and is suitable for polished concrete surfaces.
 - 1. Products: Subject to compliance with
 - a. Dancer Concrete Design; Strong Tread Densifier
 - b. Ameripolish; 3DHS
 - c. L & M Construction Chemicals; Lion Hard
- B. Semi-Penetrating Stain Guard: A micro film forming material which will penetrate into the polished and densifier concrete leaving a protective surface film.
 - 1. Dancer Concrete Design; Strong Tread Stain Guard SPF
 - 2. Ameripolish; 3DSP
 - 3. L & M Construction Chemicals; Permaguard SPS
- C. Impregnating Stain Protection: Non film forming stain and food resistant penetrating sealer designed to be applied to densified and polished concrete.
 - 1. Dancer Concrete Design; Strong Tread Stain Guard PSG
 - 2. Ameripolish; SR2
 - 3. L & M Construction Chemicals; Petrotex

2.3 STAIN MATERIALS

- A. Penetrating Dye: Non-film forming soluble colorant dissolved in a carrier designated to penetrate and alter coloration and appearance of a concrete floor surface without a chemical reaction.
 - 1. Dancer Concrete Design; Penetrating Dye
 - 2. Ameripolish; Sure Lock Dye
 - 3. L & M Construction Chemicals; Vivid Dye

2.4 REPAIR PRODUCTS

- A. Grout Coat: A cementitious based, acrylic modified slurry used to fill in surface imperfections, small cracks and pop-outs on the floor.
 - 1. Dancer Concrete Design; Polishing Grout Coat
 - 2. Husqvarna; GM3000 Grouting System
- B. Repair Mortar: A rapid-setting resin based repair mortar mixed with sand and/or stone aggregate to repair the floor in large cracks, crevices and divots. Product to be colored to coordinate with final floor color selected.
 - 1. Dancer Concrete Design; Polishing Repair Mortar
 - 2. Metzger-McGuire; Rapid Refloor XP
 - a. Final Fill. A colored, clay patch used to fill in final surface imperfections, small pop-outs, or final fill on small cracks in the floor surface. Product color to be coordinated with final floor color selected.

2.5 JOINT FILLER

A. Provide semi-rigid polyuria polymer liquid system with 100% solids. Basis-of-design MetzferMcGuire Edge-Pro 80.

2.6 POLISHING EQUIPMENT

- A. Field Grinding and Polishing Equipment
 - 1. A multiple head, counter rotating, walk behind on machine, with diamond tooling affixed to the head for the purpose of grinding concrete. Excludes janitorial equipment.
 - 2. If dry grinding, honing, or polishing, use dust extraction equipment with flow rate suitable for dust generated, with squeegee attachments.
 - 3. If wet grinding, honing, or polishing use slurry extraction equipment suitable for slurry removal and containment prior to proper disposal.

a. Edge Grinding and Polishing Equipment: Hand-held machine which produces same results, without noticeable differences, as field grinding polishing equipment.

PART 3 - EXECUTION

3.1 POLISHING

- A. Final Polishing Depth of Exposure as indicated on the drawings
- B. Aggregate Exposure Class B "Find/Sand Aggregate Finish: Removes not more than 1/16th of concrete surface by grinding and polishing resulting in majority of exposure displaying fine aggregate with no, or a small amount of medium aggregate at random locations.
- 3.2 Level of Floor Reflection
 - A. Finished Gloss Level 1 " Satin " 400 Grit Finish
- 3.3 Floor Polishing System
 - A. Follow the following system for floor polishing where indicated on the drawings.
 - 1. Machine grind floor surfaces to receive polished finishes level and smooth, hand tool around all walls, openings and obstructions as necessary to approved depth of exposure and match approved mock up.
 - 2. Treat surface imperfections with grouting process or repair mortar.
 - 3. Application of Stain or Dye for polished concrete in polishing sequence and according to manufacturer's written instructions.
 - 4. Apply penetrating liquid densifier for polished concrete in polishing sequence and according to manufacturer's written instructions, allowing recommended drying time between successive coats.
 - 5. Continue with polishing with progressively finer-grit diamond polishing pads to gloss level, to match approved mock-up and specified gloss level.
 - 6. Apply specific stain guard treatment to floor and complete final burnishing with appropriate diamond impregnated burnishing pad or buffing pad.
 - 7. Control and dispose of waste products produced by grinding and polishing operations.
 - 8. Neutralize and clean polished floor surfaces.

3.4 **PROTECTION**

A. Covering: After completion of polishing, protect polished floors from subsequent construction activities with protective covering.

SECTION 03 45 00 - PRECAST ARCHITECTURAL CONCRETE

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes architectural precast concrete cladding units.

1.2 DEFINITIONS

A. Design Reference Sample: Sample of approved architectural precast concrete color, finish and texture, preapproved by Architect.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings:
 - 1. Detail fabrication and installation of architectural precast concrete units.
 - 2. Indicate locations, plans, elevations, dimensions, shapes, and cross sections of each unit.
 - 3. Indicate joints, reveals, drips, chamfers, and extent and location of each surface finish.
 - 4. Indicate details at building corners.
- C. Samples: Design reference samples for initial verification of design intent, for each type of finish indicated on exposed surfaces of architectural precast concrete units, representative of finish, color, and texture variations expected; approximately 4 by 4 inches.

1.4 QUALITY ASSURANCE

- A. Fabricator Qualifications: A firm that assumes responsibility for engineering architectural precast concrete units to comply with performance requirements. This responsibility includes preparation of Shop Drawings and comprehensive engineering analysis by a qualified professional engineer.
- B. Quality-Control Standard: For manufacturing procedures and testing requirements, quality-control recommendations, and dimensional tolerances for types of units required, comply with PCI MNL 117, "Manual for Quality Control for Plants and Production of Architectural Precast Concrete Products."

1.5 COORDINATION

A. Furnish loose connection hardware and anchorage items to be embedded in or attached to other construction without delaying the Work. Provide locations, setting diagrams, templates, instructions, and directions, as required, for installation.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Design Standards: Comply with ACI 318 and design recommendations of PCI MNL 120, "PCI Design Handbook Precast and Prestressed Concrete," applicable to types of architectural precast concrete units indicated.
- B. Structural Performance: Provide architectural precast concrete units and connections capable of withstanding design loads indicated within limits and under conditions indicated.

2.2 REINFORCING MATERIALS

- A. Recycled Content of Steel Products: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.
- B. Reinforcing Bars: ASTM A 615/A 615M, Grade 60, deformed.
- C. Low-Alloy-Steel Reinforcing Bars: ASTM A 706/A 706M, deformed.
- D. Plain-Steel Welded Wire Reinforcement: ASTM A 185/A 185M, fabricated from galvanized-steel wire into flat sheets.
- E. Deformed-Steel Welded Wire Reinforcement: ASTM A 497/A 497M, flat sheet.
- F. Supports: Suspend reinforcement from back of mold or use bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded wire reinforcement in place according to PCI MNL 117.

2.3 PRESTRESSING TENDONS

- A. Prestressing Strand: ASTM A 416/A 416M, Grade 270, uncoated, seven-wire, low-relaxation strand.
 - 1. Coat unbonded post-tensioning strand with post-tensioning coating complying with ACI 423.7 and sheath with polypropylene tendon sheathing complying with ACI 423.7. Include anchorage devices and coupler assemblies.

2.4 CONCRETE MATERIALS

- A. Portland Cement: ASTM C 150/C 150M, Type I or Type III, gray, unless otherwise indicated.
 - 1. For surfaces exposed to view in finished structure, use gray or white cement, of same type, brand, and mill source.
- B. Normal-Weight Aggregates: Except as modified by PCI MNL 117, ASTM C 33/C 33M, with coarse aggregates complying with Class 5S. Stockpile fine and coarse aggregates for each type of exposed finish from a single source (pit or quarry) for Project.
 - 1. Face-Mixture-Fine Aggregates: Selected, natural or manufactured sand compatible with coarse aggregate; to match approved finish sample.
- C. Coloring Admixture: ASTM C 979/C 979M, synthetic or natural mineral-oxide pigments or colored water-reducing admixtures, temperature stable, and nonfading.
- D. Water: Potable; free from deleterious material that may affect color stability, setting, or strength of concrete and complying with chemical limits of PCI MNL 117.
- E. Air-Entraining Admixture: ASTM C 260, certified by manufacturer to be compatible with other required admixtures.
- F. Chemical Admixtures: Certified by manufacturer to be compatible with other admixtures and to not contain calcium chloride, or more than 0.15 percent chloride ions or other salts by weight of admixture.

2.5 STEEL CONNECTION MATERIALS

- A. Zinc-Coated Finish: For exterior steel items, steel in exterior walls, and items indicated for galvanizing, apply zinc coating by hot-dip process according to ASTM A 123/A 123M or ASTM A 153/A 153M.
 - 1. Galvanizing Repair Paint: High-zinc-dust-content paint with dry film containing not less than 94 percent zinc dust by weight, and complying with DOD-P-21035B or SSPC-Paint 20.

2.6 GROUT MATERIALS

A. Sand-Cement Grout: Portland cement, ASTM C 150/C 150M, Type I, and clean, natural sand, ASTM C 144 or ASTM C 404. Mix at ratio of 1 part cement to 2-1/2 to 3 parts sand, by volume, with minimum water required for placement and hydration. Water-soluble chloride ion content less than 0.06 percent by weight of cement when tested according to ASTM C 1218/C 1218M.

2.7 CONCRETE MIXTURES

- A. Prepare design mixtures for each type of precast concrete required.
- B. Limit use of fly ash and ground granulated blast-furnace slag to 20 percent of portland cement by weight; limit metakaolin and silica fume to 10 percent of portland cement by weight.
- C. Design mixtures may be prepared by a qualified independent testing agency or by qualified precast plant personnel at architectural precast concrete fabricator's option.
- D. Limit water-soluble chloride ions to maximum percentage by weight of cement permitted by ACI 318 or PCI MNL 117 when tested according to ASTM C 1218/C 1218M.
- E. Normal-Weight Concrete Mixtures: Proportion mixtures by either laboratory trial batch or field test data methods according to ACI 211.1, with materials to be used on Project, to provide normal-weight concrete with the following properties:
 - 1. Compressive Strength (28 Days): 5000 psi minimum.
- F. Water Absorption: 6 percent by weight or 14 percent by volume, tested according to ASTM C 642, except for boiling requirement.
- G. Add air-entraining admixture at manufacturer's prescribed rate to result in concrete at point of placement having an air content complying with PCI MNL 117.
- H. When included in design mixtures, add other admixtures to concrete mixtures according to manufacturer's written instructions.

2.8 FABRICATION

- A. Cast-in Anchors, Inserts, Plates, Angles, and Other Anchorage Hardware: Fabricate anchorage hardware with sufficient anchorage and embedment to comply with design requirements. Accurately position for attachment of loose hardware, and secure in place during precasting operations. Locate anchorage hardware where it does not affect position of main reinforcement or concrete placement.
 - 1. Weld-headed studs and deformed bar anchors used for anchorage according to AWS D1.1/D1.1M and AWS C5.4, "Recommended Practices for Stud Welding."
- B. Furnish loose hardware items including steel plates, clip angles, seat angles, anchors, dowels, cramps, hangers, and other hardware shapes for securing architectural precast concrete units to supporting and adjacent construction.
- C. Reinforcement: Comply with recommendations in PCI MNL 117 for fabricating, placing, and supporting reinforcement.

- D. Reinforce architectural precast concrete units to resist handling, transportation, and erection stresses and specified in-place loads.
- E. Prestress tendons for architectural precast concrete units by either pretensioning or post-tensioning methods. Comply with PCI MNL 117.
- F. Comply with requirements in PCI MNL 117 and requirements in this Section for measuring, mixing, transporting, and placing concrete. After concrete batching, no additional water may be added.
- G. Place concrete in a continuous operation to prevent cold joints or planes of weakness from forming in precast concrete units.
- H. Thoroughly consolidate placed concrete by internal and external vibration without dislocating or damaging reinforcement and built-in items, and minimize pour lines, honeycombing, or entrapped air voids on surfaces. Use equipment and procedures complying with PCI MNL 117.
 - 1. Place self-consolidating concrete without vibration according to PCI TR-6, "Interim Guidelines for the Use of Self-Consolidating Concrete in Precast/Prestressed Concrete Institute Member Plants." Ensure adequate bond between face and backup concrete, if used.
- I. Comply with PCI MNL 117 for hot- and cold-weather concrete placement.
- J. Identify pickup points of architectural precast concrete units and orientation in structure with permanent markings, complying with markings indicated on Shop Drawings. Imprint or permanently mark casting date on each architectural precast concrete unit on a surface that does not show in finished structure.
- K. Cure concrete, according to requirements in PCI MNL 117, by moisture retention without heat or by accelerated heat curing using low-pressure live steam or radiant heat and moisture. Cure units until compressive strength is high enough to ensure that stripping does not have an effect on performance or appearance of final product.
- L. Discard and replace architectural precast concrete units that do not comply with requirements, including structural, manufacturing tolerance, and appearance, unless repairs meet requirements in PCI MNL 117 and Architect's approval.

2.9 FABRICATION TOLERANCES

A. Fabricate architectural precast concrete units to shapes, lines, and dimensions indicated so each finished unit complies with PCI MNL 117 product tolerances as well as position tolerances for cast-in items.

2.10 FINISHES

- A. Exposed faces shall be free of joint marks, grain, and other obvious defects. Corners, including false joints shall be uniform, straight, and sharp. Finish exposed-face surfaces of architectural precast concrete units to match approved mockupsand as follows:
 - 1. Design Reference Sample: Submit a minimum of 3 samples of mix design:
 - a. Mix Design: To be selected from full range.
 - 2. PCI's "Architectural Precast Concrete Color and Texture Selection Guide," of plate numbers indicated.
 - 3. As-Cast Surface Finish: Provide surfaces to match approved sample for acceptable surface, air voids, sand streaks, and honeycomb.
 - 4. Acid-Etched Finish: Use acid and hot-water solution, equipment, application techniques, and cleaning procedures to expose aggregate and surrounding matrix surfaces. Protect hardware, connections, and insulation from acid attach.
- B. Finish exposed top surfaces of architectural precast concrete units with smooth, steel-trowel finish.
- C. Finish unexposed surfaces of architectural precast concrete units with as cast finish.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install clips, hangers, bearing pads, and other accessories required for connecting architectural precast concrete units to supporting members and backup materials.
- B. Erect architectural precast concrete level, plumb, and square within specified allowable tolerances. Provide temporary supports and bracing as required to maintain position, stability, and alignment of units until permanent connections are completed.
 - 1. Maintain horizontal and vertical joint alignment and uniform joint width as erection progresses.
 - 2. Unless otherwise indicated, maintain uniform joint widths of 3/4 inch.
- C. Connect architectural precast concrete units in position by bolting, welding, grouting, or as otherwise indicated on Shop Drawings. Remove temporary shims, wedges, and spacers as soon as practical after connecting and grouting are completed.
- D. At bolted connections, use lock washers, tack welding, or other approved means to prevent loosening of nuts after final adjustment.

E. Grouting or Dry-Packing Connections and Joints: Grout connections where required or indicated. Retain flowable grout in place until hard enough to support itself. Alternatively, pack spaces with stiff dry-pack grout material, tamping until voids are completely filled. Place grout and finish smooth, level, and plumb with adjacent concrete surfaces. Promptly remove grout material from exposed surfaces before it affects finishes or hardens. Keep grouted joints damp for not less than 24 hours after initial set.

3.2 ERECTION TOLERANCES

A. Erect architectural precast concrete units level, plumb, square, and in alignment without exceeding the noncumulative erection tolerances of PCI MNL 117, Appendix I.

3.3 REPAIRS

- A. Repair architectural precast concrete units if permitted by Architect. Architect reserves the right to reject repaired units that do not comply with requirements.
- B. Mix patching materials and repair units so cured patches blend with color, texture, and uniformity of adjacent exposed surfaces and show no apparent line of demarcation between original and repaired work, when viewed in typical daylight illumination from a distance of 20 feet.
- C. Remove and replace damaged architectural precast concrete units when repairs do not comply with requirements.

3.4 CLEANING

- A. Clean surfaces of precast concrete units exposed to view.
- B. Clean mortar, plaster, fireproofing, weld slag, and other deleterious material from concrete surfaces and adjacent materials immediately.
- C. Clean exposed surfaces of precast concrete units after erection and completion of joint treatment to remove weld marks, other markings, dirt, and stains.
 - 1. Perform cleaning procedures, if necessary, according to precast concrete fabricator's recommendations. Protect other work from staining or damage due to cleaning operations.
 - 2. Do not use cleaning materials or processes that could change the appearance of exposed concrete finishes or damage adjacent materials.

END OF SECTION 03 45 00
SECTION 04 01 20.63 - BRICK MASONRY REPAIR

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes repairing brick masonry, including replacing units.

1.2 UNIT PRICES

A. Work of this Section is affected by unit prices specified in Section 01 22 00 "Unit Prices."

1.3 DEFINITIONS

A. Rebuilding (Setting) Mortar: Mortar used to set and anchor masonry in a structure, distinct from pointing mortar installed after masonry is set in place.

1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, and locations of replacement masonry units on the structure.
 - 2. Show provisions for expansion joints or other sealant joints.
- C. Samples: For each exposed product and for each color and texture specified.

1.6 QUALITY ASSURANCE

- A. Brick Masonry Repair Specialist Qualifications: Engage an experienced brick masonry repair firm to perform work of this Section. Firm shall have completed work similar in material, design, and extent to that indicated for this Project with a record of successful in-service performance. Experience in only installing masonry is insufficient experience for masonry repair work.
- B. Mockups: Prepare mockups of brick masonry repair to demonstrate aesthetic effects and to set quality standards for materials and execution and for fabrication and installation.

1. Masonry Repair: Prepare sample areas for each type of masonry repair work performed. If not otherwise indicated, size each mockup not smaller than two adjacent whole units. Construct sample areas in locations in existing walls where directed by Architect unless otherwise indicated. Demonstrate quality of materials, workmanship, and blending with existing work.

PART 2 - PRODUCTS

2.1 MASONRY MATERIALS

- A. Face Brick: As required to complete brick masonry repair work.
 - 1. Brick Matching Existing: Units with colors, color variation within units, surface texture, size, and shape that match existing brickwork.
 - a. For existing brickwork that exhibits a range of colors or color variation within units, provide brick that proportionally matches that range and variation rather than brick that matches an individual color within that range.
 - 2. Special Shapes:
 - a. Provide molded, 100 percent solid shapes for applications where core holes or "frogs" could be exposed to view or weather when in final position and where shapes produced by sawing would result in sawed surfaces being exposed to view.
 - b. Provide specially ground units, shaped to match patterns, for arches and where indicated.
 - c. Mechanical chopping or breaking brick, or bonding pieces of brick together by adhesive, are unacceptable procedures for fabricating special shapes.
- B. Building Brick: ASTM C 62, Grade SW and of same vertical dimension as face brick, for masonry work concealed from view.

2.2 MORTAR MATERIALS

- A. Portland Cement: ASTM C 150/C 150M, Type I or Type II, except Type III may be used for cold-weather construction; white, gray or natural where required for color matching of mortar.
 - 1. Provide cement containing not more than 0.60 percent total alkali when tested according to ASTM C 114.
- B. Hydrate Lime: ASTM C 207, Type S
- C. Mortar Sand: ASTM C 144.
 - 1. Exposed Mortar: Match size, texture, and gradation of existing mortar sand as closely as possible. Blend several sands if necessary to achieve suitable match.

- 2. Colored Mortar: Natural sand or ground marble, granite, or other sound stone of color necessary to produce required mortar color.
- D. Mortar Pigments: ASTM C 979/C 979M, compounded for use in mortar mixes, and having a record of satisfactory performance in masonry mortars.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Davis Colors, Inc.; True Tone Mortar Colors.
 - b. Lanxess Corporation; Bayferrox Iron Oxide Pigments.
 - c. Solomon Colors, Inc.; SGS Mortar Colors.
- E. Water: Potable.

2.3 ACCESSORY MATERIALS

- A. Setting Buttons and Shims: Resilient plastic, nonstaining to masonry, sized to suit joint thicknesses and bed depths of masonry units, less the required depth of pointing materials unless removed before pointing.
- B. Other Products: Select materials and methods of use based on the following, subject to approval of a mockup:
 - 1. Previous effectiveness in performing the work involved.
 - 2. Minimal possibility of damaging exposed surfaces.
 - 3. Consistency of each application.
 - 4. Uniformity of the resulting overall appearance.
 - 5. Do not use products or tools that could leave residue on surfaces.

2.4 MORTAR MIXES

- A. Measurement and Mixing: Measure cementitious materials and sand in a dry condition by volume or equivalent weight. Do not measure by shovel; use known measure. Mix materials in a clean, mechanical batch mixer.
- B. Colored Mortar: Produce mortar of color required by using specified ingredients. Do not alter specified proportions without Architect's approval.
 - 1. Mortar Pigments: Where mortar pigments are indicated, do not add pigment exceeding 10 percent by weight of the cementitious or binder materials, except for carbon black which is limited to 2 percent.
- C. All mortar shall match that of the original building in strength, color, type, texture and profile and shall match that of the approved, installed sample area.
- D. Do not use admixtures in mortar unless otherwise indicated.
- E. Mixes: Mix mortar materials in the following proportions:

- 1. Rebuilding (Setting) Mortar by Volume: ASTM C 270, Proportion Specification, 1 part portland cement, 1 part lime, and 6 parts sand. Adjust mortar mix in field if necessary to insure compatibility with existing mortar. Mix all mortar on the job site.
- 2. Pigmented, Colored Mortar: Add mortar pigments to produce exposed, setting (rebuilding) mortar of colors required.

PART 3 - EXECUTION

3.1 **PROTECTION**

A. Protect windows and adjacent building elements from damage throughout masonry repair activities.

3.2 BRICK REMOVAL AND REPLACEMENT

- A. At locations indicated, remove bricks that are damaged, spalled, or deteriorated. Carefully remove entire units from joint to joint, without damaging surrounding masonry, in a manner that permits replacement with full-size units.
- B. Support and protect remaining masonry that surrounds removal area.
- C. Maintain flashing, reinforcement, lintels, and adjoining construction in an undamaged condition.
- D. Notify Architect of unforeseen detrimental conditions including voids, cracks, bulges, and loose units in existing masonry backup, rotted wood, rusted metal, and other deteriorated items.
- E. Remove in an undamaged condition as many whole bricks as possible.
 - 1. Remove mortar, loose particles, and soil from brick by cleaning with hand chisels, brushes, and water.
 - 2. Remove sealants by cutting close to brick with utility knife and cleaning with solvents.
- F. Clean masonry surrounding removal areas by removing mortar, dust, and loose particles in preparation for brick replacement.
- G. Replace removed damaged brick with other removed brick in good condition, where possible, matching existing brick. Do not use broken units unless they can be cut to usable size.
- H. Install replacement brick into bonding and coursing pattern of existing brick. If cutting is required, use a motor-driven saw designed to cut masonry with clean, sharp, unchipped edges.
 - 1. Maintain joint width for replacement units to match existing joints.
 - 2. Use setting buttons or shims to set units accurately spaced with uniform joints.

- I. Lay replacement brick with rebuilding (setting) mortar and with completely filled bed, head, and collar joints. Butter ends with enough mortar to fill head joints and shove into place. Wet both replacement and surrounding bricks that have ASTM C 67 initial rates of absorption (suction) of more than 30 g/30 sq. in. per min. Use wetting methods that ensure that units are nearly saturated but surface is dry when laid.
 - 1. Tool exposed mortar joints in repaired areas to match joints of surrounding existing brickwork.
 - 2. Rake out mortar used for laying brick before mortar sets according to Section 04 01 20.64 "Brick Masonry Repointing." Point at same time as repointing of surrounding area.
 - 3. When mortar is hard enough to support units, remove shims and other devices interfering with pointing of joints.
- J. Curing: Cure mortar by maintaining in thoroughly damp condition for at least 72 consecutive hours, including weekends and holidays.
 - 1. Hairline cracking within the mortar or mortar separation at edge of a joint is unacceptable. Completely remove such mortar and repoint.

3.3 FINAL CLEANING

- A. After mortar has fully hardened, thoroughly clean exposed masonry surfaces of excess mortar and foreign matter; use wood scrapers, stiff-nylon or -fiber brushes, and clean water, applied by low pressure spray.
 - 1. Do not use metal scrapers or brushes.
 - 2. Do not use acidic or alkaline cleaners.

END OF SECTION 04 01 20.63

SECTION 04 01 20.64 - BRICK MASONRY REPOINTING

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes repointing joints with mortar.

1.2 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples: For each exposed product and for each color and texture specified.

1.4 QUALITY ASSURANCE

- A. Brick Masonry Repointing Specialist Qualifications: Engage an experienced brick masonry repointing firm to perform work of this Section. Firm shall have completed work similar in material, design, and extent to that indicated for this Project with a record of successful in-service performance. Experience in only installing masonry is insufficient experience for masonry repointing work.
- B. Mockups: Prepare mockups of brick masonry repointing to demonstrate aesthetic effects and to set quality standards for materials and execution.
 - 1. Repointing: Rake out joints in two separate areas, each approximately 36 inches high by 48 inches wide, unless otherwise indicated, for each type of repointing required, and repoint one of the areas.

PART 2 - PRODUCTS

2.1 MORTAR MATERIALS

- A. Portland Cement: ASTM C 150/C 150M, Type I or Type II, except Type III may be used for cold-weather construction; white or gray, or both where required for color matching of mortar.
 - 1. Provide cement containing not more than 0.60 percent total alkali when tested according to ASTM C 114.

- B. Hydrated Lime: ASTM C 207, Type S.
- C. Mortar Cement: ASTM C 1329/C 1329M.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Lafarge North America Inc.; Lafarge Mortar CementMagnolia Superbond Mortar Cement.
- D. Mortar Sand: ASTM C 144.
 - 1. Match size, texture, and gradation of existing mortar sand as closely as possible. Blend several sands if necessary to achieve suitable match.
 - 2. Color: Provide natural sand or ground marble, granite, or other sound stone of color necessary to produce required mortar color.
- E. Mortar Pigments: ASTM C 979/C 979M, compounded for use in mortar mixes, and having a record of satisfactory performance in masonry mortars.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Davis Colors; True Tone Mortar Colors.
 - b. LANXESS Corporation; Bayferrox Iron Oxide Pigments.
 - c. Solomon Colors, Inc.; SGS Mortar Colors.
- F. Water: Potable.

2.2 MORTAR MIXES

- A. Measurement and Mixing: Measure cementitious materials and sand in a dry condition by volume or equivalent weight. Do not measure by shovel; use known measure. Mix materials in a clean, mechanical batch mixer.
 - 1. Mixing Pointing Mortar: Thoroughly mix cementitious materials and sand together before adding any water. Then mix again, adding only enough water to produce a damp, unworkable mix that retains its form when pressed into a ball. Maintain mortar in this dampened condition for 15 to 30 minutes. Add remaining water in small portions until mortar reaches desired consistency. Use mortar within one hour of final mixing; do not retemper or use partially hardened material.
- B. All mortar shall match that of the original building in strength, color, type, texture and profile and shall match that of the approved, installed, sample area.
- C. Colored Mortar: Produce mortar of color required by using specified ingredients. Do not alter specified proportions without Architect's approval.

- 1. Mortar Pigments: Where mortar pigments are indicated, do not add pigment exceeding 10 percent by weight of the cementitious or binder materials, except for carbon black which is limited to 2 percent.
- D. Do not use admixtures in mortar unless otherwise indicated.
- E. Mixes: Mix mortar materials in the following proportions:
 - 1. Pointing Mortar by Volume: ASTM C270, Proportion Specification, 1 part portland cement, 1 part lime, and 6 parts sand. Add mortar pigments to produce mortar colors required. Adjust mortar mix in the field if necessary to insure compatibility with existing mortar. Mix all mortar on the job site.

PART 3 - EXECUTION

3.1 **PROTECTION**

A. Protect windows and adjacent building elements from damage throughout masonry repointing activities.

3.2 REPOINTING MASONRY

- A. Rake out and repoint joints to the following extent:
 - 1. Refer to specification section 01 21 00 Allowances for extent of joints to be repointed on each building elevation.
 - 2. Joints indicated as sealant-filled joints. Seal joints according to Section 07 92 00 "Joint Sealants."
- B. Rake out joints as follows, according to procedures demonstrated in approved mockup:
 - 1. Remove mortar from joints to depth of 2 times joint width, but not less than that required to expose sound, unweathered mortar. Do not remove unsound mortar more than 2 inches deep; consult Architect for direction.
 - 2. Remove mortar from masonry surfaces within raked-out joints to provide reveals with square backs and to expose masonry for contact with pointing mortar. Brush, vacuum, or flush joints to remove dirt and loose debris.
 - 3. Do not spall edges of masonry units or widen joints. Replace or patch damaged masonry units as directed by Architect.
- C. Notify Architect of unforeseen detrimental conditions including voids in mortar joints, cracks, loose masonry units, rotted wood, rusted metal, and other deteriorated items.
- D. Pointing with Mortar:

- 1. Rinse joint surfaces with water to remove dust and mortar particles. Time rinsing application so, at time of pointing, joint surfaces are damp but free of standing water. If rinse water dries, dampen joint surfaces before pointing.
- 2. Apply pointing mortar first to areas where existing mortar was removed to depths greater than surrounding areas. Apply in layers not greater than 3/8 inch until a uniform depth is formed. Fully compact each layer, and allow it to become thumbprint hard before applying next layer.
- 3. After deep areas have been filled to same depth as remaining joints, point joints by placing mortar in layers not greater than 3/8 inch. Fully compact each layer and allow to become thumbprint hard before applying next layer. Where existing masonry units have worn or rounded edges, slightly recess finished mortar surface below face of masonry to avoid widened joint faces. Take care not to spread mortar beyond joint edges onto exposed masonry surfaces or to featheredge the mortar.
- 4. When mortar is thumbprint hard, tool joints to match original appearance of joints as demonstrated in approved mockup. Remove excess mortar from edge of joint by brushing.
- 5. Cure mortar by maintaining in thoroughly damp condition for at least 72 consecutive hours, including weekends and holidays.
- 6. Hairline cracking within mortar or mortar separation at edge of a joint is unacceptable. Completely remove such mortar and repoint.
- E. Where repointing work precedes cleaning of existing masonry, allow mortar to harden at least 30 days before beginning cleaning work.

3.3 FINAL CLEANING

- A. After mortar has fully hardened, thoroughly clean exposed masonry surfaces of excess mortar and foreign matter; use wood scrapers, stiff-nylon or -fiber brushes, and clean water, applied by low pressure spray.
 - 1. Do not use metal scrapers or brushes.
 - 2. Do not use acidic or alkaline cleaners.

END OF SECTION 04 01 20.64

SECTION 04 01 40.61 - STONE REPAIR

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes repairing stone masonry, including replacing whole and partial units.

1.2 DEFINITIONS

A. Rebuilding (Setting) Mortar: Mortar used to set and anchor masonry in a structure, distinct from pointing mortar installed after masonry is set in place.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, and locations of replacement stone units on the structure and their jointing.
 - 2. Show partial replacement stone units (dutchmen).
 - 3. Show provisions for expansion joints or other sealant joints.
 - 4. Show replacement and repair anchors, including drilled-in pins.
- C. Samples: For each exposed product and for each color and texture specified.

1.5 INFORMATIONAL SUBMITTALS

A. Quality-control program.

1.6 QUALITY ASSURANCE

A. Stone Repair Specialist Qualifications: Engage an experienced stone repair firm to perform work of this Section. Firm shall have completed work similar in material, design, and extent to that indicated for this Project with a record of successful in-service performance. Experience in only installing standard unit masonry or new stone masonry is insufficient experience for stone repair work.

- B. Mockups: Prepare mockups of stone repair to demonstrate aesthetic effects and to set quality standards for materials and execution and for fabrication and installation.
 - 1. Stone Repair: Prepare sample areas for each type of stone indicated to have repair work performed. If not otherwise indicated, size each mockup not smaller than two adjacent whole units. Demonstrate quality of materials, workmanship, and blending with existing work.

PART 2 - PRODUCTS

2.1 STONE MATERIALS

- A. Stone Matching Existing: Natural building stone of variety, color, texture, grain, veining, finish, size, and shape that match existing stone.
 - 1. Physical Properties for Sandstone:
 - a. Compressive Strength: according to ASTM C 170/C 170M.
 - b. Modulus of Rupture: according to ASTM C 99/C 99.
 - c. Absorption: according to ASTM C 97/C 97.
 - d. Bulk Specific Gravity: according to ASTM C 97/C 97.
- B. Cutting New Stone: Cut each new stone so that, when it is set in final position, the rift or natural bedding planes will match the rift orientation of existing stones.

2.2 MORTAR MATERIALS

- A. Portland Cement: ASTM C 150/C 150M, Type I or Type II, except Type III may be used for cold-weather construction; white,gray or both where required for color matching of mortar.
 - 1. Provide cement containing not more than 0.60 percent total alkali when tested according to ASTM C 114.
- B. Hydrated Lime: ASTM C 207, Type S.
- C. Mortar Sand: ASTM C 144.
 - 1. Exposed Mortar: Match size, texture, and gradation of existing mortar sand as closely as possible. Blend several sands if necessary to achieve suitable match.
 - 2. Colored Mortar: Natural sand or ground marble, granite, or other sound stone of color necessary to produce required mortar color.
- D. Mortar Pigments: ASTM C 979/C 979M, compounded for use in mortar mixes, and having a record of satisfactory performance in stone mortars.
 - 1. Products: Provide one of the following:

- a. Solomon Colors, Inc.; SGS Mortar Colors.
- b. Davis Colors, Inc; True Tone Mortar Colors
- c. Lanxess Corporationl Bayferrox Iron Oxide Pigments
- E. Water: Potable.

2.3 MANUFACTURED REPAIR MATERIALS

- A. Stone Patching Compound: Factory-mixed cementitious product that is custom manufactured for patching stone.
 - 1. Products: Provide the following:
 - a. Conproco Corporation; Mimic.
 - b. Jahn International; M70 Natural Stone Repair Mortar
 - c. M70 Stone Restoration Mortar
 - 2. Use formulation that is vapor and water permeable (equal to or more than the stone), exhibits low shrinkage, has lower modulus of elasticity than stone units being repaired, and develops high bond strength to all types of stone.
 - 3. Formulate patching compound in colors, textures, and grain to match stone being patched.
- B. Stone-to-Stone Adhesive / Crack Repair: Two-part polyester or epoxy-resin stone adhesive with a 15- to 45-minute cure at 70 deg F, recommended in writing by adhesive manufacturer for type of stone repair indicated, and matching stone color.
 - 1. Products: Provide the following:
 - a. Edison Coatings, Inc.; Flexi-Weld 520T or approved equal.

2.4 ACCESSORY MATERIALS

- A. Setting Buttons and Shims: Resilient plastic, nonstaining to stone, sized to suit joint thicknesses and bed depths of stone units, less the required depth of pointing materials unless removed before pointing.
- B. Other Products: Select materials and methods of use based on the following, subject to approval of a mockup:
 - 1. Previous effectiveness in performing the work involved.
 - 2. Minimal possibility of damaging exposed surfaces.
 - 3. Consistency of each application.
 - 4. Uniformity of the resulting overall appearance.
 - 5. Do not use products or tools that could leave residue on surfaces.

2.5 MORTAR MIXES

- A. Measurement and Mixing: Measure cementitious materials and sand in a dry condition by volume or equivalent weight. Do not measure by shovel; use known measure. Mix materials in a clean, mechanical batch mixer.
- B. Colored Mortar: Produce mortar of color required by using specified ingredients. Do not alter specified proportions without Architect's approval.
 - 1. Mortar Pigments: Where mortar pigments are indicated, do not add pigment exceeding 10 percent by weight of the cementitious or binder materials, except for carbon black which is limited to 2 percent.
- C. Do not use admixtures in mortar unless otherwise indicated.
- D. Mixes: Mix mortar materials in the following proportions:
 - 1. Rebuilding (Setting) Mortar by Volume: 1 part portland cement, 1 part lime, and 6 parts sand. Adjust mortar mix in field if necessary to insure compatibility with existing mortar mix. Mix all mortar on the job site.
 - 2. Rebuilding (Setting) Mortar by Type: ASTM C 270, Proportion Specification, Type N unless otherwise indicated, with cementitious material limited to portland cement and lime.
 - 3. Pigmented, Colored Mortar: Add mortar pigments to produce exposed, setting (rebuilding) mortar of colors required.

PART 3 - EXECUTION

3.1 **PROTECTION**

A. Protect surrounding roof areas to maintain a water-tight envelope.

3.2 STONE REMOVAL AND REPLACEMENT

- A. At locations indicated, remove stone that has deteriorated or is damaged beyond repair. Carefully remove entire units from joint to joint, without damaging surrounding stone, in a manner that permits replacement with full-size units.
- B. Support and protect remaining stonework that surrounds removal area.
- C. Maintain flashing, reinforcement, lintels, and adjoining construction in an undamaged condition.
- D. Notify Architect of unforeseen detrimental conditions including voids, cracks, bulges, and loose units in existing stone or unit masonry backup, rotted wood, rusted metal, and other deteriorated items.

- E. Remove in an undamaged condition as many whole stone units as possible.
 - 1. Remove mortar, loose particles, and soil from stone by cleaning with hand chisels, brushes, and water.
 - 2. Remove sealants by cutting close to stone with utility knife and cleaning with solvents.
- F. Clean stone surrounding removal areas by removing mortar, dust, and loose particles in preparation for stone replacement.
- G. Replace removed damaged stone with other removed stone in good condition, where possible, matching existing stone, including direction of rift or natural bedding planes. Do not use broken units unless they can be cut to usable size.
- H. Install replacement stone into bonding and coursing pattern of existing stone. If cutting is required, use a motor-driven saw designed to cut stone with clean, sharp, unchipped edges. Finish edges to blend with appearance of edges of existing stone.
 - 1. Maintain joint width for replacement stone to match existing joints.
 - 2. Use setting buttons or shims to set stone accurately spaced with uniform joints.
- I. Set replacement stone with rebuilding (setting) mortar and with completely filled bed, head, and collar joints. Butter vertical joints for full width before setting, and set units in full bed of mortar unless otherwise indicated. Replace existing anchors with new anchors matching existing configuration.
 - 1. Tool exposed mortar joints in repaired areas to match joints of surrounding existing stonework.
 - 2. Rake out mortar used for laying stone before mortar sets. Point at same time as repointing of surrounding area.
 - 3. When mortar is hard enough to support units, remove shims and other devices interfering with pointing of joints.
- J. Curing: Cure mortar by maintaining in thoroughly damp condition for at least 72 consecutive hours, including weekends and holidays.
 - 1. Hairline cracking within the mortar or mortar separation at edge of a joint is unacceptable. Completely remove such mortar and repoint.

3.3 PARTIAL STONE REPLACEMENT

- A. Remove defective portion of existing stone unit (backing stone). Carefully remove defective portion of stone by making vertical and horizontal saw cuts at face of backing stone and removing defective material to depth required for fitting partial replacement (dutchman).
 - 1. Make edges of backing stone at cuts smooth and square to each other and to finished surface; essentially rectangular. Make back of removal area flat and parallel to stone face.
 - 2. Do not overcut at corners and intersections. Hand trim to produce clean sharp corners with no rounding and no damage to existing work to remain.

- 3. If backing stone becomes damaged further, remove damaged area and enlarge partial replacement as required.
- B. Remove mortar from joints that abut area of stone removal to same depth as stone was removed. Remove loose mortar particles and other debris from surfaces to be bonded and surfaces of adjacent stone units that will receive mortar by cleaning with stiff-fiber brush.
- C. Cut and trim partial replacement to accurately fit area where material was removed from backing stone. Fabricate to size required to produce joints between partial replacement and backing stone of no more than 1/16 inch in width, and joints between partial replacement and other stones that match existing joints between stones.
- D. Concealed Pinning: Before applying adhesive, prepare for concealed mechanical anchorage consisting of 1/4-inch- diameter, plain stainless-steel pins set into 1/4-inch- diameter holes drilled into backing stone and into, but not through, the partial replacement.
- E. Apply stone-to-stone adhesive according to adhesive manufacturer's written instructions. Coat bonding surfaces of backing stone and partial replacement, completely filling all crevices and voids.
- F. Apply partial replacement while adhesive is still tacky and hold securely in place until adhesive has cured. Use shims, clamps, wedges, or other devices as necessary to align face of partial replacement with face of backing stone.
- G. Clean adhesive residue from exposed surfaces and patch chipped areas and exposed drill holes as specified in "Stone Patching" Article.

3.4 CRACK INJECTION

- A. General: Comply with cementitious crack-filler manufacturer's written instructions.
- B. Clean cementitious crack filler from face of stone before it sets by scrubbing with water.

3.5 STONE PATCHING

- A. Remove deteriorated material and remove adjacent material that has begun to deteriorate. Carefully remove additional material so patch does not have feathered edges but has square or slightly undercut edges on area to be patched and is at least 1/4 inch thick, but not less than recommended in writing by patching compound manufacturer.
- B. Mask adjacent mortar joint or rake out for repointing if patch will extend to edge of stone unit.
- C. Mix patching compound in individual batches to match each stone unit being patched. Combine one or more colors of patching compound, as needed, to produce exact match.
- D. Brush-coat stone surfaces with slurry coat of patching compound according to manufacturer's written instructions.

- E. Place patching compound in layers as recommended in writing by patching compound manufacturer, but not less than 1/4 inch or more than 2 inches thick. Roughen surface of each layer to provide a key for next layer.
 - 1. Simple Details: Trowel, scrape, or carve surface of patch to match texture and surrounding surface plane or contour of the stone. Shape and finish surface before or after curing, as determined by testing, to best match existing stone.
 - 2. Carved Details: Build patch up 1/4 inch above surrounding stone, and carve surface to match adjoining stone after patching compound has hardened.
- F. Keep each layer damp for 72 hours or until patching compound has set.
- G. Remove and replace patches with hairline cracks or that show separation from stone at edges, and those that do not match adjoining stone in color or texture.

3.6 FINAL CLEANING

- A. After mortar has fully hardened, thoroughly clean exposed stone surfaces of excess mortar and foreign matter; use wood scrapers, stiff-nylon or -fiber brushes, and clean water, applied by low-pressure spray.
 - 1. Do not use metal scrapers or brushes.
 - 2. Do not use acidic or alkaline cleaners.

END OF SECTION 04 01 40.61

SECTION 04 01 40.62 - STONE REPOINTING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes repointing joints with mortar.
- B. Refer to elevation drawings for various sandstone components to be repointed.

1.2 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples: For each exposed product and for each color and texture specified.

1.4 QUALITY ASSURANCE

- A. Stone Repointing Specialist Qualifications: Engage an experienced stone repointing firm to perform work of this Section. Firm shall have completed work similar in material, design, and extent to that indicated for this Project with a record of successful in-service performance. Experience in only installing standard unit masonry or new stone masonry is insufficient experience for stone repointing work.
- B. Mockups: Prepare mockups of stone repointing to demonstrate aesthetic effects and to set quality standards for materials and execution.
 - 1. Repointing: Rake out joints in two separate areas each approximately 24 inches high by 48 inches wide unless otherwise indicated for each type of repointing required, and repoint one of the areas.

PART 2 - PRODUCTS

2.1 MORTAR MATERIALS

A. Portland Cement: ASTM C 150/C 150M, Type I or Type II, except Type III may be used for cold-weather construction; white, gray, or natural where required for color matching of mortar.

- 1. Provide cement containing not more than 0.60 percent total alkali when tested according to ASTM C 114.
- B. Hydrated Lime: ASTM C 207, Type S.
- C. Mortar Sand: ASTM C 144.
 - 1. Match size, texture, and gradation of existing mortar sand as closely as possible. Blend several sands if necessary to achieve suitable match.
 - 2. Color: Natural sand or ground marble, granite, or other sound stone of color necessary to produce required mortar color.
- D. Mortar Pigments: ASTM C 979/C 979M, compounded for use in mortar mixes, and having a record of satisfactory performance in masonry mortars.
 - 1. 1. Products: Subject to compliance with requirements. provide one of the following:
 - a. Davis Colors; True Tone Mortar Colors.
 - b. LANXESS Corporation; Bayferrox Iron Oxide Pigments.
 - c. Solomon Colors, Inc.; SGS Mortar Colors.
- E. Water:Potable

2.2 MORTAR MIXES

- A. Measurement and Mixing: Measure cementitious materials and sand in a dry condition by volume or equivalent weight. Do not measure by shovel; use known measure. Mix materials in a clean, mechanical batch mixer.
 - 1. Mixing Pointing Mortar: Thoroughly mix cementitious materials and sand together before adding any water. Then mix again, adding only enough water to produce a damp, unworkable mix that retains its form when pressed into a ball. Maintain mortar in this dampened condition for 15 to 30 minutes. Add remaining water in small portions until mortar reaches desired consistency. Use mortar within one hour of final mixing; do not retemper or use partially hardened material.
- B. All mortar shall match that of the original building in strength, color, type, texture and profile and shall match that of the approved, installed sample area.
- C. Colored Mortar: Produce mortar of color required by using specified ingredients. Do not alter specified proportions without Architect's approval.
- D. Mortar Pigments: Where pigments are indicated, do not add pigment exceeding 10 percent by weight of the cementitious or binder materials except for carbon black which is limited to 21 percent.
- E. Do not use admixtures in mortar unless otherwise indicated.

- F. Mixes: Mix mortar materials in the following proportions:
 - 1. Pointing Mortar by Volume: ASTM C 270, Proportion Specification, 1 part portland cement, 1 part lime, and 6 parts sand. Add mortar pigments to produce colors required. Adjust mortar mix in field if necessary to insure compatibility with existing mortar on the job site.

PART 3 - EXECUTION

3.1 REPOINTING STONEWORK

- A. Rake out and repoint joints to the following extent:
 - 1. All joints in areas indicated.
 - 2. Joints indicated as sealant-filled joints. Seal joints according to Section 07 92 00 "Joint Sealants."
- B. Rake out joints as follows, according to procedures demonstrated in approved mockup:
 - 1. Remove mortar from joints to depth of 2 times joint width, but not less than 3/4 inch or not less than that required to expose sound, unweathered mortar. Do not remove unsound mortar more than 2 inches deep; consult Architect for direction.
 - 2. Remove mortar from stone surfaces within raked-out joints to provide reveals with square backs and to expose stone for contact with pointing mortar. Brush, vacuum, or flush joints to remove dirt and loose debris.
 - 3. Do not spall edges of stone units or widen joints. Replace or patch damaged stone units as directed by Architect.
- C. Notify Architect of unforeseen detrimental conditions including voids in mortar joints, cracks, loose stone, rotted wood, rusted metal, and other deteriorated items.
- D. Pointing with Mortar:
 - 1. Rinse joint surfaces with water to remove dust and mortar particles. Time rinsing application so, at time of pointing, joint surfaces are damp but free of standing water. If rinse water dries, dampen joint surfaces before pointing.
 - 2. Apply pointing mortar first to areas where existing mortar was removed to depths greater than surrounding areas. Apply in layers not greater than 3/8 inch until a uniform depth is formed. Fully compact each layer, and allow it to become thumbprint hard before applying next layer.
 - 3. After deep areas have been filled to same depth as remaining joints, point joints by placing mortar in layers not greater than 3/8 inch. Fully compact each layer and allow to become thumbprint hard before applying next layer. Where existing stone has worn or rounded edges, slightly recess finished mortar surface below face of stone to avoid widened joint faces. Take care not to spread mortar beyond joint edges onto exposed stone surfaces or to featheredge the mortar.

- 4. When mortar is thumbprint hard, tool joints to match original appearance of joints as demonstrated in approved mockup. Remove excess mortar from edge of joint by brushing.
- 5. Cure mortar by maintaining in thoroughly damp condition for at least 72 consecutive hours, including weekends and holidays.
- 6. Hairline cracking within mortar or mortar separation at edge of a joint is unacceptable. Completely remove such mortar and repoint.
- E. Where repointing work precedes cleaning of existing stone, allow mortar to harden at least 30 days before beginning cleaning work.

3.2 FINAL CLEANING

- A. After mortar has fully hardened, thoroughly clean exposed stone surfaces of excess mortar and foreign matter; use wood scrapers, stiff-nylon or -fiber brushes, and clean water, applied by low-pressure spray.
 - 1. Do not use metal scrapers or brushes.
 - 2. Do not use acidic or alkaline cleaners.

END OF SECTION 04 01 40.62

SECTION 04 03 10 - HISTORIC MASONRY CLEANING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes historic treatment work consisting of cleaning historic clay brick and stone masonry surfaces.
- B. All masonry surfaces on east and south historic building elevations are to be cleaned.

1.2 DEFINITIONS

- A. Low-Pressure Spray: 100 to 400 psi; 4 to 6 gpm.
- B. Medium-Pressure Spray: 400 to 800 psi; 4 to 6 gpm.

1.3 PREINSTALLATION MEETINGS

- A. Preinstallation Conference: Conduct conference on historic masonry cleaning at Project site.
 - 1. Review methods and procedures related to cleaning historic masonry.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.5 QUALITY ASSURANCE

- A. Historic Treatment Specialist Qualifications: A qualified historic masonry cleaning specialist. Experience cleaning new masonry work is insufficient experience for historic treatment work.
- B. Mockups: Prepare mockups of cleaning on existing surfaces to demonstrate aesthetic effects and to set quality standards for materials and execution.
 - 1. Cleaning: Clean an area approximately 25 sq. ft. for each type of masonry and surface condition.

PART 2 - PRODUCTS

2.1 CLEANING MATERIALS

- A. Water: Potable.
- B. Hot Water: Water heated to a temperature of 140 to 160 deg F.
- C. Detergent Solution, Job Mixed: Solution prepared by mixing 2 cups of tetrasodium pyrophosphate (TSPP), 1/2 cup of laundry detergent, and 20 quarts of hot water for every 5 gal. of solution required.

PART 3 - EXECUTION

3.1 CLEANING MASONRY, GENERAL

- A. Proceed with cleaning in an orderly manner; work from bottom to top and from one end of each elevation to the other. Ensure that dirty residues and rinse water do not wash over dry, cleaned surfaces.
- B. Use only those cleaning methods indicated for each masonry material and location.
 - 1. Brushes: Do not use wire brushes or brushes that are not resistant to chemical cleaner being used.
 - 2. Spray Equipment: Use spray equipment that provides controlled application at volume and pressure indicated, measured at nozzle. Adjust pressure and volume to ensure that cleaning methods do not damage masonry.
 - a. Equip units with pressure gauges.
 - b. For water-spray application, use fan-shaped spray that disperses water at an angle of 25 to 50 degrees.
 - c. For heated water-spray application, use equipment capable of maintaining temperature between 140 and 160 deg F at flow rates indicated.
- C. Perform each cleaning method indicated in a manner that results in uniform coverage of all surfaces, including corners, moldings, and interstices, and that produces an even effect without streaking or damaging masonry surfaces. Keep wall wet below area being cleaned to prevent streaking from runoff.
- D. Water-Spray Application Method: Unless otherwise indicated, hold spray nozzle at least 6 inches from masonry surface, and apply water in horizontal back-and-forth sweeping motion, overlapping previous strokes to produce uniform coverage.

E. Rinse off residue and soil by working upward from bottom to top of each treated area at each stage or scaffold setting. Periodically during each rinse, test pH of rinse water running off of cleaned area to determine that chemical cleaner is completely removed.

3.2 PRELIMINARY CLEANING

- A. Removing Plant Growth: Completely remove visible plant, moss, and shrub growth from masonry surfaces. Carefully remove plants, creepers, and vegetation by cutting at roots and allowing remaining growth to dry as long as possible before removal. Remove loose soil and plant debris from open masonry joints to whatever depth they occur.
- B. Preliminary Cleaning: Before beginning general cleaning, remove extraneous substances that are resistant to planned cleaning methods.

3.3 CLEANING BRICKWORK

- A. Detergent Cleaning:
 - 1. Wet surface with cold water applied by low-pressure spray.
 - 2. Scrub surface with detergent solution using medium-soft brushes until soil is thoroughly dislodged and can be removed by rinsing. Use small brushes to remove soil from mortar joints and crevices. Dip brush in solution often to ensure that adequate fresh detergent is used and that surface remains wet.
 - 3. Rinse with cold water applied by medium-pressure spray to remove detergent solution and soil.
 - 4. Repeat cleaning procedure above, where required to produce cleaning effect established by mockup.

3.4 CLEANING UNPOLISHED STONEWORK

- A. Detergent Cleaning:
 - 1. Wet surface with cold water applied by low-pressure spray.
 - 2. Scrub surface with detergent solution using medium-soft brushes until soil is thoroughly dislodged and can be removed by rinsing. Use small brushes to remove soil from mortar joints and crevices. Dip brush in solution often to ensure that adequate fresh detergent is used and that surface remains wet.
 - 3. Rinse with cold water applied by medium-pressure spray to remove detergent solution and soil.
 - 4. Repeat cleaning procedure above, where required to produce cleaning effect established by mockup.

END OF SECTION 04 03 10

SECTION 04 20 00 - UNIT MASONRY

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Concrete masonry units.
 - 2. Clay face brick.

1.2 DEFINITIONS

- A. CMU(s): Concrete masonry unit(s).
- B. Reinforced Masonry: Masonry containing reinforcing steel in grouted cells.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For reinforcing steel. Detail bending, lap lengths, and placement of unit masonry reinforcing bars. Comply with ACI 315. Show elevations of reinforced walls.
- C. Samples for Verification: For each type and color of exposed masonry unit and colored mortar.

1.4 INFORMATIONAL SUBMITTALS

- A. Mix Designs: For each type of mortar and grout. Include description of type and proportions of ingredients.
 - 1. Include test reports for mortar mixes required to comply with property specification. Test according to ASTM C 109/C 109M for compressive strength, ASTM C 1506 for water retention, and ASTM C 91/C 91M for air content.
 - 2. Include test reports, according to ASTM C 1019, for grout mixes required to comply with compressive strength requirement.

1.5 QUALITY ASSURANCE

A. Sample Panels: Build sample panels to verify selections made under Sample submittals and to demonstrate aesthetic effects. Architect and Construction Manager will advise on sample panel layout and construction requirements.

1. Build sample panels for typical exterior wall in sizes approximately 36 inches long by 72 inches high by full thickness.

1.6 FIELD CONDITIONS

- A. Cold-Weather Requirements: Do not use frozen materials or materials mixed or coated with ice or frost. Do not build on frozen substrates. Remove and replace unit masonry damaged by frost or by freezing conditions. Comply with cold-weather construction requirements contained in TMS 602/ACI 530.1/ASCE 6.
- B. Hot-Weather Requirements: Comply with hot-weather construction requirements contained in TMS 602/ACI 530.1/ASCE 6.

PART 2 - PRODUCTS

2.1 UNIT MASONRY, GENERAL

- A. Masonry Standard: Comply with TMS 602/ACI 530.1/ASCE 6, except as modified by requirements in the Contract Documents.
- B. Defective Units: Referenced masonry unit standards may allow a certain percentage of units to contain chips, cracks, or other defects exceeding limits stated. Do not use units where such defects are exposed in the completed Work and will be within 20 feet vertically and horizontally of a walking surface.
- C. Fire-Resistance Ratings: Comply with requirements for fire-resistance-rated assembly designs indicated.
 - 1. Where fire-resistance-rated construction is indicated, units shall be listed and labeled by a qualified testing agency acceptable to authorities having jurisdiction.

2.2 CONCRETE MASONRY UNITS

- A. Shapes: Provide shapes indicated and as follows, with exposed surfaces matching exposed faces of adjacent units unless otherwise indicated.
 - 1. Provide special shapes for lintels, corners, jambs, sashes, movement joints, bonding, and other special conditions.
- B. CMUs: ASTM C 90.
 - 1. Unit Compressive Strength: Provide units with minimum average net-area compressive strength of 2800 psi.
 - 2. Density Classification: Normal weight unless otherwise indicated.

2.3 BRICK

- A. General: Provide shapes indicated and as follows, with exposed surfaces matching finish and color of exposed faces of adjacent units:
 - 1. For ends of sills and caps and for similar applications that would otherwise expose unfinished brick surfaces, provide units without cores or frogs and with exposed surfaces finished.
 - 2. Provide special shapes for applications where shapes produced by sawing would result in sawed surfaces being exposed to view.
- B. Clay Face Brick: Facing brick complying with ASTM C 216
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. New Building: Modular size units as manufactured by Belden Brick Company or Glen-Gery Brick Company. Note there are two colors of brick masonry on the new building (field and accent band).
 - 1) Grade: SW.
 - 2) Type: FBX.
 - 3) Unit Compressive Strength: Provide units with minimum average net-area compressive strength of 20,000 psi
 - 4) Initial Rate of Absorption: Less than 30 g/30 sq. in. per minute when tested according to ASTM C 67.
 - 5) Efflorescence: Provide brick that has been tested according to ASTM C 67 and is rated "not effloresced."
 - 6) Size (Actual Dimensions): 3-5/8 inches wide by 2 1/4 inches high by 7-5/8 inches long.

2.4 MORTAR AND GROUT MATERIALS

- A. Masonry Cement: ASTM C 91/C 91M.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Cemex S.A.B. de C.V.; Brikset Type NCitadel Type SDixie Type SKosmortar Type NRichmortarVictor Plastic Cement.
 - b. Essroc; BrixmentFlamingo Color Masonry CementVelvet.
 - c. Holcim (US) Inc; Mortamix Masonry CementRainbow Mortamix Custom Buff Masonry CementWhite Mortamix Masonry Cement.
 - d. Lafarge North America Inc.; Lafarge Masonry CementMagnolia Masonry CementTrinity White Masonry Cement.
 - e. Lehigh Hanson; HeidelbergCement Group; Lehigh Masonry CementLehigh White Masonry Cement.

- B. Mortar Pigments: Natural and synthetic iron oxides and chromium oxides, compounded for use in mortar mixes and complying with ASTM C 979/C 979M. Use only pigments with a record of satisfactory performance in masonry mortar.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following. Architect will select from the full line of Manufacturer's Standards:
 - a. Davis Colors; True Tone Mortar Colors.
 - b. Lanxess Corporation; Bayferrox Iron Oxide Pigments.
 - c. Solomon Colors, Inc.; SGS Mortar Colors.
- C. Aggregate for Mortar: ASTM C 144.
 - 1. For joints less than 1/4 inch thick, use aggregate graded with 100 percent passing the No. 16 sieve.
 - 2. White-Mortar Aggregates: Natural white sand or crushed white stone.
 - 3. Colored-Mortar Aggregates: Natural sand or crushed stone of color necessary to produce required mortar color.
- D. Aggregate for Grout: ASTM C 404.
- E. Water: Potable.

2.5 REINFORCEMENT

- A. Uncoated-Steel Reinforcing Bars: ASTM A 615/A 615M or ASTM A 996/A 996M, Grade 60.
 - 1. Reinforcing Rebar Positioners:
 - a. Basis of Design: MasonPro; Core Lock Single Rebar Positioner
- B. Masonry-Joint Reinforcement, General: ASTM A 951/A 951M.
 - 1. Interior Walls: Hot-dip galvanized carbon steel.
 - 2. Exterior Walls: Hot-dip galvanized carbon steel.
 - 3. Wire Size for Side Rods: 0.148-inch diameter.
 - 4. Wire Size for Cross Rods: 0.148-inch diameter.
 - 5. Spacing of Cross Rods, Tabs, and Cross Ties: Not more than 16 inches o.c.
 - 6. Provide in lengths of not less than 10 feet, with prefabricated corner and tee units.
- C. Masonry-Joint Reinforcement for Single-Wythe Masonry: Ladder or truss type with single pair of side rods.

2.6 TIES AND ANCHORS

A. General: Ties and anchors shall extend at least 1-1/2 inches into veneer but with at least a 5/8-inch cover on outside face.

- B. Mechanically Attached, Thermal Adjustable Masonry Veneer Anchors
 - 1. Manufacturer: Heckmann Building products, Inc
 - a. Product: Pos-I-Tie Thermal Clip
 - 1) Barrel
 - a) One piece screw, 3/8" diameter in material and length as recommended by the manufacturer
 - 2) Masonry Veneer Ties
 - a) Material: Stainless steel type 304 or hot dipped galvanized per ASTM A 153/A 153M, Class B-2.
 - b) Wire Size: 3/16 inch
 - 3) Application
 - a) Brick to wood studs
 - b) Brick to concrete
 - 4) Engineered masonry anchors to be used at locations where cavity depth exceeds manufacturer limits of standard anchor.
- C. Partition Top Anchors: 0.105-inch- thick metal plate with a 3/8-inch- diameter metal rod 6 inches long welded to plate and with closed-end plastic tube fitted over rod that allows rod to move in and out of tube. Fabricate from steel, hot-dip galvanized after fabrication.

2.7 EMBEDDED FLASHING MATERIALS

- A. Metal Flashing: Provide metal flashing complying with Section 07 62 00 "Sheet Metal Flashing and Trim" and as follows:
 - 1. Fabricate metal drip edges from stainless steel. Extend at least 3 inches into wall and 1/2 inch out from wall, with outer edge bent down 30 degrees and hemmed.
 - 2. Fabricate metal sealant stops from stainless steel. Extend at least 3 inches into wall and out to exterior face of wall. At exterior face of wall, bend metal back on itself for 3/4 inch and down into joint 1/4 inch to form a stop for retaining sealant backer rod.
 - 3. Fabricate metal expansion-joint strips from stainless steel to shapes indicated.
- B. Flexible Flashing: Use one of the following unless otherwise indicated:
 - 1. Copper-Laminated Flashing: 7-oz./sq. ft. copper sheet bonded between two layers of glass-fiber cloth. Use only where flashing is fully concealed in masonry.
 - a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

- 1) Advanced Building Products Inc.; Copper Fabric FlashingCopper Sealtite 2000.
- 2) Hohmann & Barnard, Inc; Copper Fabric Flashing.
- 3) York Manufacturing, Inc; Multi-Flash 500.
- C. Adhesives, Primers, and Seam Tapes for Flashings: Flashing manufacturer's standard products or products recommended by flashing manufacturer for bonding flashing sheets to each other and to substrates.

2.8 MISCELLANEOUS MASONRY ACCESSORIES

- A. Drip Edge Flashing: Stainless Steel ASTM 580/ ASTM 580M Type 304, 36 gauge, 3" wide
- B. Compressible Filler: Premolded filler strips complying with ASTM D 1056, Grade 2A1; compressible up to 35 percent; of width and thickness indicated; formulated from neoprene.
- C. Preformed Control-Joint Gaskets: Made from styrene-butadiene-rubber compound, complying with ASTM D 2000, Designation M2AA-805 and designed to fit standard sash block and to maintain lateral stability in masonry wall; size and configuration as indicated.
- D. Bond-Breaker Strips: Asphalt-saturated felt complying with ASTM D 226/D 226M, Type I (No. 15 asphalt felt).
- E. Weep/Cavity Vent Products: Use one of the following unless otherwise indicated:
 - 1. Cotton Wicks: Unless otherwise indicated on drawings, provide at all window head weep locations and other weep locations NOT occurring at base of wall assembly. Cut cotton wicks to not extend more than 3/8" beyond the face of the masonry.
 - 2. Vinyl Weep Hole/Vent: Units made from flexible PVC, designed to fit into a head joint and consisting of a louvered vertical leg, flexible wings to seal against ends of masonry units, and a top flap to keep mortar out of the head joint; in color selected by Architect.
 - a. Products: Subject to compliance with requirements, provide one of the following:
 - 1) Hohmann & Barnard, Inc; #343 Weep Hole.
 - 2) Williams Products, Inc; Williams-Goodco Brick Vent.
 - 3) Wire-Bond; Louvered Weepholes.
 - b. Unless indicated on plans, provide at all base of wall assembly weep conditions.
- F. Cavity Drainage Material: Free-draining mesh, made from polymer strands that will not degrade within the wall cavity.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Advanced Building Products Inc.; Mortar BreakMortar Break II.
 - b. CavClear/Archovations, Inc.; CavClear Masonry Mat.

- c. Heckmann Building Products, Inc.; Weep-Thru Mortar Deflector.
- d. Hohmann & Barnard, Inc; Mortar Trap.
- e. Mortar Net USA, Ltd; Mortar Net.
- f. Wire-Bond; Cavity NetCavity Net II.
- 2. Configuration: Provide one of the following:
 - a. Strips, full depth of cavity and 10 inches high (unless noted otherwise), with dovetail shaped notches 7 inches deep that prevent clogging with mortar droppings.

2.9 MASONRY CLEANERS

- A. Proprietary Acidic Cleaner: Manufacturer's standard-strength cleaner designed for removing mortar/grout stains, efflorescence, and other new construction stains from new masonry without discoloring or damaging masonry surfaces. Use product expressly approved for intended use by cleaner manufacturer and manufacturer of masonry units being cleaned.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Diedrich Technologies, Inc.; a division of Sandell Construction Solutions.
 - b. EaCo Chem, Inc.
 - c. PROSOCO, Inc.

2.10 MORTAR AND GROUT MIXES

- A. General: Do not use admixtures, including pigments, air-entraining agents, accelerators, retarders, water-repellent agents, antifreeze compounds, or other admixtures unless otherwise indicated.
 - 1. Do not use calcium chloride in mortar or grout.
 - 2. Use masonry cement mortar unless otherwise indicated.
- B. Preblended, Dry Mortar Mix: Furnish dry mortar ingredients in form of a preblended mix. Measure quantities by weight to ensure accurate proportions, and thoroughly blend ingredients before delivering to Project site.
- C. Mortar for Unit Masonry: Comply with ASTM C 270, Proportion Specification. Provide the following types of mortar for applications stated unless another type is indicated or needed to provide required compressive strength of masonry.
 - 1. For masonry below grade or in contact with earth, use Type M.
 - 2. For reinforced masonry, use Type S.
 - 3. For mortar parge coats, use Type N.
 - 4. For exterior, above-grade, load-bearing and nonload-bearing walls and parapet walls; for interior load-bearing walls; for interior nonload-bearing partitions; and for other applications where another type is not indicated, use Type N.

- 5. For interior nonload-bearing partitions, Type N.
- D. Pigmented Mortar: Use colored cement product or select and proportion pigments with other ingredients to produce color required. Do not add pigments to colored cement products.
 - 1. Pigments shall not exceed 5 percent of masonry cement by weight.
 - 2. Application: Use pigmented mortar for exposed mortar joints with the following units:
 - a. Clay face brick.
- E. Grout for Unit Masonry: Comply with ASTM C 476.
 - 1. Use grout of type indicated or, if not otherwise indicated, of type (fine or coarse) that will comply with TMS 602/ACI 530.1/ASCE 6 for dimensions of grout spaces and pour height.
 - 2. Proportion grout in accordance with ASTM C 476, Table 1 or paragraph 4.2.2 for specified 28-day compressive strength indicated, but not less than 2000 psi.
 - 3. Provide grout with a slump of 8 to 11 inches as measured according to ASTM C 143/C 143M.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Use full-size units without cutting if possible. If cutting is required to provide a continuous pattern or to fit adjoining construction, cut units with motor-driven saws; provide clean, sharp, unchipped edges. Allow units to dry before laying unless wetting of units is specified. Install cut units with cut surfaces and, where possible, cut edges concealed.
- B. Select and arrange units for exposed unit masonry to produce a uniform blend of colors and textures. Mix units from several pallets or cubes as they are placed.
- C. Wetting of Brick: Wet brick before laying if initial rate of absorption exceeds 30 g/30 sq. in. per minute when tested according to ASTM C 67. Allow units to absorb water so they are damp but not wet at time of laying.

3.2 TOLERANCES

- A. Dimensions and Locations of Elements:
 - 1. For dimensions in cross section or elevation, do not vary by more than plus 1/2 inch or minus 1/4 inch.
 - 2. For location of elements in plan, do not vary from that indicated by more than plus or minus 1/2 inch.
 - 3. For location of elements in elevation, do not vary from that indicated by more than plus or minus 1/4 inch in a story height or 1/2 inch total.

- B. Lines and Levels:
 - 1. For bed joints and top surfaces of bearing walls, do not vary from level by more than 1/4 inch in 10 feet, or 1/2-inch maximum.
 - 2. For conspicuous horizontal lines, such as lintels, sills, parapets, and reveals, do not vary from level by more than 1/8 inch in 10 feet, 1/4 inch in 20 feet, or 1/2-inch maximum.
 - 3. For vertical lines and surfaces, do not vary from plumb by more than 1/4 inch in 10 feet, 3/8 inch in 20 feet, or 1/2-inch maximum.
 - 4. For conspicuous vertical lines, such as external corners, door jambs, reveals, and expansion and control joints, do not vary from plumb by more than 1/8 inch in 10 feet, 1/4 inch in 20 feet, or 1/2-inch maximum.
 - 5. For lines and surfaces, do not vary from straight by more than 1/4 inch in 10 feet, 3/8 inch in 20 feet, or 1/2-inch maximum.
- C. Joints:
 - 1. For bed joints, do not vary from thickness indicated by more than plus or minus 1/8 inch, with a maximum thickness limited to 1/2 inch.
 - 2. For head and collar joints, do not vary from thickness indicated by more than plus 3/8 inch or minus 1/4 inch.
 - 3. For exposed head joints, do not vary from thickness indicated by more than plus or minus 1/8 inch.

3.3 LAYING MASONRY WALLS

- A. Lay out walls in advance for accurate spacing of surface bond patterns with uniform joint thicknesses and for accurate location of openings, movement-type joints, returns, and offsets. Avoid using less-than-half-size units, particularly at corners, jambs, and, where possible, at other locations.
- B. Bond Pattern for Exposed Masonry: Unless otherwise indicated, lay exposed masonry in running bond; do not use units with less-than-nominal 4-inch horizontal face dimensions at corners or jambs.
- C. Built-in Work: As construction progresses, build in items specified in this and other Sections. Fill in solidly with masonry around built-in items.
- D. Fill space between steel frames and masonry solidly with mortar unless otherwise indicated.
- E. Fill cores in hollow CMUs with grout 24 inches under bearing plates, beams, lintels, posts, and similar items unless otherwise indicated.

3.4 MORTAR BEDDING AND JOINTING

- A. Lay CMUs as follows:
 - 1. Bed face shells in mortar and make head joints of depth equal to bed joints.

- 2. Bed webs in mortar in all courses of piers, columns, and pilasters.
- 3. Bed webs in mortar in grouted masonry, including starting course on footings.
- 4. Fully bed entire units, including areas under cells, at starting course on footings where cells are not grouted.
- B. Lay solid masonry units with completely filled bed and head joints; butter ends with sufficient mortar to fill head joints and shove into place. Do not deeply furrow bed joints or slush head joints.
- C. Tool exposed joints slightly concave when thumbprint hard, using a jointer larger than joint thickness unless otherwise indicated.
- D. Cut joints flush for masonry walls to receive plaster or other direct-applied finishes (other than paint) unless otherwise indicated.

3.5 MASONRY-JOINT REINFORCEMENT

- A. General: Install entire length of longitudinal side rods in mortar with a minimum cover of 5/8 inch on exterior side of walls, 1/2 inch elsewhere. Lap reinforcement a minimum of 6 inches.
 - 1. Space reinforcement not more than 16 inches o.c.
 - 2. Space reinforcement not more than 8 inches o.c. in foundation walls and parapet walls.
 - 3. Provide reinforcement not more than 8 inches above and below wall openings and extending 12 inches beyond openings in addition to continuous reinforcement.
- B. Interrupt joint reinforcement at control and expansion joints unless otherwise indicated.
- C. Provide continuity at wall intersections by using prefabricated T-shaped units.
- D. Provide continuity at corners by using prefabricated L-shaped units.

3.6 ANCHORING MASONRY TO STRUCTURAL STEEL AND CONCRETE

- A. Anchor masonry to structural steel and concrete, where masonry abuts or faces structural steel or concrete, to comply with the following:
 - 1. Provide an open space not less than 1 inch wide between masonry and structural steel or concrete unless otherwise indicated. Keep open space free of mortar and other rigid materials.
 - 2. Anchor masonry with anchors embedded in masonry joints and attached to structure.
 - 3. Space anchors as indicated, but not more than 24 inches o.c. vertically and 36 inches o.c. horizontally.

3.7 FLASHING, WEEP HOLES, AND CAVITY VENTS

- A. General: Install embedded flashing and weep holes in masonry at shelf angles, lintels, ledges, other obstructions to downward flow of water in wall, and where indicated. Install cavity vents at shelf angles, ledges, and other obstructions to upward flow of air in cavities, and where indicated.
- B. Install flashing as follows unless otherwise indicated:
 - 1. Prepare masonry surfaces so they are smooth and free from projections that could puncture flashing. Where flashing is within mortar joint, place through-wall flashing on sloping bed of mortar and cover with mortar. Before covering with mortar, seal penetrations in flashing with adhesive, sealant, or tape as recommended by flashing manufacturer.
 - 2. At lintels and shelf angles, extend flashing a minimum of 6 inches into masonry at each end. At heads and sills, extend flashing 6 inches at ends and turn up not less than 2 inches to form end dams.
 - 3. Install metal drip edges beneath flexible flashing at exterior face of wall. Stop flexible flashing 1/2 inch back from outside face of wall, and adhere flexible flashing to top of metal drip edge.
 - 4. Install metal flashing termination beneath flexible flashing at exterior face of wall. Stop flexible flashing 1/2 inch back from outside face of wall, and adhere flexible flashing to top of metal flashing termination.
- C. Install weep holes in exterior wythes and veneers in head joints of first course of masonry immediately above embedded flashing.
 - 1. Use specified weep/cavity vent products to form weep holes.
 - 2. Space weep holes 24 inches o.c. unless otherwise indicated.
 - 3. Cover cavity side of weep holes with plastic insect screening at cavities insulated with loose-fill insulation.
- D. Place cavity drainage material in airspace behind veneers to comply with configuration requirements for cavity drainage material in "Miscellaneous Masonry Accessories" Article.
- E. Install cavity vents in head joints in exterior wythes at spacing indicated. Use specified weep/cavity vent products to form cavity vents.
 - 1. Close cavities off vertically and horizontally with blocking in manner indicated. Install through-wall flashing and weep holes above horizontal blocking.

3.8 REINFORCED UNIT MASONRY INSTALLATION

A. Temporary Formwork and Shores: Construct formwork and shores as needed to support reinforced masonry elements during construction.

- 1. Construct formwork to provide shape, line, and dimensions of completed masonry as indicated. Make forms sufficiently tight to prevent leakage of mortar and grout. Brace, tie, and support forms to maintain position and shape during construction and curing of reinforced masonry.
- 2. Do not remove forms and shores until reinforced masonry members have hardened sufficiently to carry their own weight and that of other loads that may be placed on them during construction.
- B. Placing Reinforcement: Comply with requirements in TMS 602/ACI 530.1/ASCE 6.
- C. Grouting: Do not place grout until entire height of masonry to be grouted has attained enough strength to resist grout pressure.
 - 1. Comply with requirements in TMS 602/ACI 530.1/ASCE 6 for cleanouts and for grout placement, including minimum grout space and maximum pour height.
 - 2. Limit height of vertical grout pours to not more than 60 inches.

3.9 FIELD QUALITY CONTROL

- A. Testing and Inspecting: Owner will engage special inspectors to perform tests and inspections and prepare reports. Allow inspectors access to scaffolding and work areas as needed to perform tests and inspections. Retesting of materials that fail to comply with specified requirements shall be done at Contractor's expense.
- B. Inspections: Special inspections according to Level B in TMS 402/ACI 530/ASCE 5.
 - 1. Begin masonry construction only after inspectors have verified proportions of site-prepared mortar.
 - 2. Place grout only after inspectors have verified compliance of grout spaces and of grades, sizes, and locations of reinforcement.
 - 3. Place grout only after inspectors have verified proportions of site-prepared grout.
- C. Testing Prior to Construction: One set of tests.
- D. Testing Frequency: One set of tests for each 5000 sq. ft. of wall area or portion thereof.
- E. Clay Masonry Unit Test: For each type of unit provided, according to ASTM C 67 for compressive strength.
- F. Concrete Masonry Unit Test: For each type of unit provided, according to ASTM C 140 for compressive strength.
- G. Mortar Aggregate Ratio Test (Proportion Specification): For each mix provided, according to ASTM C 780.
- H. Mortar Test (Property Specification): For each mix provided, according to ASTM C 780. Test mortar for mortar air content and compressive strength.

I. Grout Test (Compressive Strength): For each mix provided, according to ASTM C 1019.

3.10 REPAIRING, POINTING, AND CLEANING

- A. In-Progress Cleaning: Clean unit masonry as work progresses by dry brushing to remove mortar fins and smears before tooling joints.
- B. Final Cleaning: After mortar is thoroughly set and cured, clean exposed masonry as follows:
 - 1. Remove large mortar particles by hand with wooden paddles and nonmetallic scrape hoes or chisels.
 - 2. Protect adjacent surfaces from contact with cleaner.
 - 3. Wet wall surfaces with water before applying cleaners; remove cleaners promptly by rinsing surfaces thoroughly with clear water.
 - 4. Clean masonry with a proprietary acidic cleaner applied according to manufacturer's written instructions.

3.11 MASONRY WASTE DISPOSAL

- A. Waste Disposal as Fill Material: Dispose of clean masonry waste, including excess or soil-contaminated sand, waste mortar, and broken masonry units, by crushing and mixing with fill material as fill is placed.
 - 1. Do not dispose of masonry waste as fill within 18 inches of finished grade.
- B. Masonry Waste Recycling: Return broken CMUs not used as fill to manufacturer for recycling.
- C. Excess Masonry Waste: Remove excess clean masonry waste that cannot be used as fill, as described above or recycled, and other masonry waste, and legally dispose of off Owner's property.

END OF SECTION 04 20 00
SECTION 05 01 70.51 - DECORATIVE METAL CLEANING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes decorative metal cleaning as follows:
 - 1. Cleaning metal.
 - 2. Removing paint
 - 3. Removing corrosion.
 - 4. Priming for repainting.

1.2 UNIT PRICES

A. Work of this Section is affected by unit prices specified in Section 01 22 00 "Unit Prices."

1.3 DEFINITIONS

- A. Low-Pressure Spray: 100 to 400 psi; 4 to 6 gpm
- B. Medium-Pressure Spray: 400 to 800 psi; 4 to 6 gpm

1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.6 QUALITY ASSURANCE

- A. Decorative Metal Cleaning Specialist Qualifications: A qualified decorative metal cleaning specialist. Cleaning specialist shall be experienced in using mechanical and chemical methods on the types of metal surfaces indicated.
- B. Mockups: Prepare mockups of decorative metal cleaning to determine the most effective metal cleaning materials and process. Mock ups will be used to demonstrate aesthetic effects and to set quality standards for materials and execution. Prepare mockups so they are inconspicuous.

1. Cleaning: Prepare an area approximately 2 sq. ft. for each process on each type of metal indicated for treatment.

PART 2 - PRODUCTS

2.1 CLEANING MATERIALS

- A. Water: Potable.
- B. Hot Water: Water heated to a temperature of 140 to 160 deg F.
- C. Detergent Solution, Job Mixed: Solution prepared by mixing 2 cups of tetrasodium pyrophosphate (TSPP), 1/2 cup of laundry detergent, and 20 quarts of hot water for every 5 gal. of solution required.
- D. Nonacidic Liquid Chemical Cleaner: Manufacturer's standard mildly alkaline liquid cleaner, formulated for removing organic soiling from ordinary building materials, including polished stone, brick, copper, brass, bronze, aluminum, stainless steel, plastics, wood, and glass.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ABR Products, Inc.; Building Wash 3.
 - b. Cathedral Stone Products, Inc.; MasonRE B+.
 - c. Dumond Chemicals, Inc.; Safe n' Easy Architectural Cleaner/Restorer.
 - d. PROSOCO, Inc.; Stand Off All Surface Cleaner.
- E. Abrasive Materials:
 - 1. Abrasives for Ferrous Metal Cleaning: Aluminum oxide paper, emery paper, fine steel wool, steel scrapers, and steel-wire brushes of various sizes.
- F. Rust Remover: Manufacturer's standard phosphoric acid-based gel formulation, also called "naval jelly," for removing corrosion from iron and steel.

2.2 PAINT REMOVERS

- A. Alkaline-Paste Paint Remover: Manufacturer's standard alkaline paste or gel formulation for removing paint from metals, and containing no methylene chloride.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ABR Products, Inc.; 800 Brush Grade.
 - b. Diedrich Technologies Inc; 606 Multi-Layer Paint Remover 606X Extra Thick Multi-Layer Paint Remover.
 - c. EaCo Chem, Inc.; Stripper Cream.
 - d. Shore Corporation; 2200 Alka Strip.

- B. Low-Odor, Solvent-Type-Paste Paint Remover: Manufacturer's standard low-odor, water-rinsable solvent-type paste, gel, or foamed emulsion formulation for removing paint from metals; and containing no methanol or methylene chloride.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ABR Products, Inc.; ABR Citrus Paint Removers Super Bio Strip Gel.
 - b. Cathedral Stone Products, Inc.; S-301 S-303 S-305.
 - c. Dumond Chemicals, Inc.; Peel Away 7 without paper covering Smart Strip Smart Strip Pro.
 - d. EaCo Chem, Inc.; InStrip.
 - e. PROSOCO, Inc.; Enviro Klean SafStrip Enviro Klean SafStrip 8.

2.3 FERROUS METAL PRIMERS

A. Refer to specification section 09 91 13 Exterior Painting for metal refinishing products.

PART 3 - EXECUTION

3.1 DECORATIVE METAL CLEANING, GENERAL

- A. Execution of the Work: In cleaning items, disturb them as minimally as possible and as follows:
 - 1. Remove deteriorated coatings and corrosion.
 - 2. Sequence work to minimize time before protective coatings are reapplied.
 - 3. Clean items in place unless otherwise indicated.
- B. Mechanical Coating Removal: Use gentle methods, such as scraping and wire brushing, that will not abrade metal substrate.
- C. Repaint: Where indicated, prepare painted decorative metal by cleaning surface, removing less than firmly adhered existing paint, sanding edges smooth, and priming for painting as specified.

3.2 CLEANING

- A. General: Use those methods approved in the mockup process for each type of decorative metal and its location.
 - 1. Brushes: If using wire brushes, use brushes of same base metal composition as metal being treated. Use brushes that are resistant to chemicals being used.
 - 2. Spray Equipment: Use spray equipment that provides controlled application at volume and pressure indicated, measured at nozzle. Adjust pressure and volume to ensure that spray methods do not damage surfaces.

- a. Equip units with pressure gages.
- b. For chemical-cleaner spray application, use low-pressure tank or chemical pump suitable for chemical cleaner indicated, equipped with nozzle having a cone-shaped spray.
- c. For water-spray application, use fan-shaped spray that disperses water at an angle of 25 to 50 degrees.
- d. For heated water-spray application, use equipment capable of maintaining temperature between 140 and 160 deg F at flow rates indicated.
- 3. Uniformity: Perform each cleaning method in a manner that results in uniform coverage of all surfaces, including corners, contours, and interstices, and that produces an even effect without streaks or damaging surfaces.
- B. Water Cleaning: Clean with cold or hot water applied by **low or medium**-pressure spray. Supplement with natural-fiber or plastic-bristle brush. Use small brushes to remove soil from joints and crevices.
- C. Detergent Cleaning:
 - 1. Wet surface with cold or hot water applied by low-pressure spray.
 - 2. Scrub surface with detergent solution and natural-fiber or plastic-bristle brush until soil is thoroughly dislodged and can be removed by rinsing. Use small brushes to remove soil from joints and crevices. Dip brush in solution often to ensure that adequate fresh detergent is used and that surface remains wet.
 - 3. Rinse with cold or hot water applied by low or medium-pressure spray to remove detergent solution and soil.
 - 4. Repeat cleaning procedure where needed to produce cleaning effect established by mockup.
- D. Nonacidic Liquid Chemical Cleaning: Apply chemical cleaner to surfaces according to chemical-cleaner manufacturer's written instructions.
 - 1. Wet surface with cold or hot water applied by low-pressure spray.
 - 2. Apply cleaner to surface **in two applications** by brush **or low-pressure spray**
 - 3. Let cleaner remain on surface for period established by mockup.
 - 4. Nonferrous Metals: Rinse with cold or hot water applied by low or medium-pressure spray to remove chemicals and soil.
 - 5. Ferrous Metals: Do not rinse ferrous metals with water; neutralize chemical cleaner on ferrous metals as recommended in writing by manufacturer. Dry immediately with clean soft cloths. Follow direction of grain in metal.
 - 6. Repeat cleaning procedure where needed to produce cleaning effect established by mockup. Do not repeat more than once.
- E. Cleaning with Abrasive Pads: Clean surfaces to remove dirt by light rubbing with abrasive pads and water. Do not rinse ferrous metals with water; wipe with damp cloths to remove residue
- F. Chemical Rust Removal:

- 1. Remove loose rust scale with approved abrasives for ferrous metal cleaning.
- 2. Apply rust remover with brushes or as recommended in writing by manufacturer.
- 3. Allow rust remover to remain on surface for period recommended in writing by manufacturer or as determined by testing. Do not allow extended dwell time.
- 4. Wipe off residue with mineral spirits and either steel wool or soft rags, or clean with method recommended in writing by manufacturer to remove residue.
- 5. Dry immediately with clean, soft cloths. Follow direction of grain in metal.
- 6. Prime immediately to prevent rust. Do not touch cleaned metal surface until primed.
- G. Mechanical Rust Removal:
 - 1. Remove rust with approved abrasives for ferrous metal cleaning.
 - 2. Wipe off residue with mineral spirits and either steel wool or soft rags.
 - 3. Dry immediately with clean, soft cloths. Follow direction of grain in metal.
 - 4. Prime immediately to prevent rust. Do not touch cleaned metal surface until primed.

3.3 PAINT REMOVAL

- A. General: Use only those paint-removal methods approved for each type of decorative metal.
 - 1. Application: Apply paint removers according to paint-remover manufacturer's written instructions. Do not allow paint removers to remain on surface for periods longer than those indicated or recommended in writing by manufacturer.
 - 2. Brushes: If using wire brushes, use brushes of same base metal composition as metal being treated. Use brushes that are resistant to chemicals being used.
 - 3. Spray Equipment: Use spray equipment that provides controlled application at volume and pressure indicated, measured at nozzle. Adjust pressure and volume to ensure that spray methods do not damage surfaces.
 - a. Equip units with pressure gages.
 - b. Unless otherwise indicated, hold spray nozzle at least 6 inches from surface and apply material in horizontal, back-and-forth sweeping motion, overlapping previous strokes to produce uniform coverage.
 - c. For chemical spray application, use low-pressure tank or chemical pump suitable for chemical indicated, equipped with cone-shaped spray.
 - d. For water-spray application, use fan-shaped spray that disperses water at an angle of 25 to 50 degrees.
 - e. For heated water-spray application, use equipment capable of maintaining temperature between 140 and 160 deg F at flow rates indicated.
- B. Paint Removal with Alkaline-Paste Paint Remover:
 - 1. Remove loose and peeling paint using water, scrapers, stiff brushes, or a combination of these. Let surface dry thoroughly.
 - 2. Apply paint remover to dry, painted metal with brushes.
 - 3. Allow paint remover to remain on surface for period recommended in writing by manufacturer or as determined by testing.

- 4. Rinse with cold or hot water applied by low or medium -pressure spray to remove chemicals and paint residue.
- 5. Use mechanical methods recommended in writing by manufacturer to remove chemicals and paint residue.
- 6. Repeat process if necessary to remove all paint.
- C. Paint Removal with Solvent-Type-Paste Paint Remover:
 - 1. Remove loose and peeling paint using water, scrapers, stiff brushes, or a combination of these. Let surface dry thoroughly.
 - 2. Apply thick coating of paint remover to painted decorative metal with natural-fiber cleaning brush, deep-nap roller, or large paint brush. Apply in one or two coats according to manufacturer's written instructions.
 - 3. Allow paint remover to remain on surface for period recommended in writing by manufacturer or as determined by testing.
 - 4. Rinse with cold or hot water applied by low or medium-pressure spray to remove chemicals and paint residue.
 - 5. Use mechanical methods recommended in writing by manufacturer to remove chemicals and paint residue.
 - 6. Repeat process if necessary to remove all paint.

3.4 PRIMING

- A. Repair Primer: Apply immediately after completing a repair.
- B. Finish Primer: Apply as soon after cleaning as possible.

END OF SECTION 05 01 70.51

SECTION 05 01 70.61 - DECORATIVE METAL REPAIR

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes decorative metal repairs as follows:
 - 1. Repairing metal and replacing damaged and missing components in place.
 - 2. Removing metal for shop repair and replacement of components; reinstalling repaired metal.

B. Related Requirements:

1. Section 01 35 16 "Alteration Project Procedures" for general remodeling, renovation, repair, and maintenance requirements.

1.2 UNIT PRICES

A. Work of this Section is affected by specified in Section 01 21 00 "Allowances."

1.3 DEFINITIONS

- A. Low-Pressure Spray: [100 to 400 psi; 4 to 6 gpm]
- B. Medium-Pressure Spray: [400 to 800 psi; 4 to 6 gpm]

1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Include plans, elevations, and sections showing locations and extent of repair and replacement work and details of each new metal item and component and its location on the structure.
- C. Samples: For each exposed product and for each color and texture specified.

1.6 QUALITY ASSURANCE

- A. Decorative Metal Repair Specialist Qualifications: A qualified decorative metal fabrication and repair specialist. Experience installing and finishing new decorative metalwork is insufficient experience for repairing decorative metal.
- B. Mockups: Prepare mockups of decorative metal repair processes to demonstrate aesthetic effects and to set quality standards for materials and execution and for fabrication and installation. Prepare mockups so they are inconspicuous.
 - 1. Replacing Galvanized metal Components: Two for each decorative galvanized metal repair area of each galvanized metal ridge cap component replaced with exact duplicates.
 - 2. Replacing Cut-Out Metal Items: One for each decorative galvanized metal repair area replaced with exact duplicates.

PART 2 - PRODUCTS

2.1 METAL MATERIALS

A. General: Provide decorative metal materials made of the alloys, forms, and types that match existing metals and have the ability to receive finishes matching existing finishes unless otherwise indicated.

2.2 PREPARATORY CLEANING MATERIALS

- A. Water: Potable.
- B. Hot Water: Water heated to a temperature of 140 to 160 deg F.
- C. Detergent Solution, Job Mixed: Solution prepared by mixing 2 cups of tetrasodium pyrophosphate (TSPP), 1/2 cup of laundry detergent, and 20 quarts of hot water for every 5 gal. of solution required.
- D. Abrasive Materials:
 - 1. Abrasive Pads for Copper-Alloy Cleaning: Extra-fine bronze wool or plastic abrasive pads.
 - 2. Abrasives for Ferrous Metal Cleaning: Aluminum oxide paper, emery paper, fine steel wool, steel scrapers, and steel-wire brushes of various sizes.
- E. Rust Remover: Manufacturer's standard phosphoric acid-based gel formulation, also called "naval jelly," for removing corrosion from iron and steel.

2.3 FASTENERS

- A. Fasteners: Fasteners of the same basic metal as fastened metal unless otherwise indicated. Use metals that are noncorrosive and compatible with each metal joined.
 - 1. Match existing fasteners in material and in type of fastener unless otherwise indicated.
 - 2. Use concealed fasteners for interconnecting decorative metal components and for attaching them to other work unless exposed fasteners are unavoidable or the existing fastening method.
 - 3. For exposed fasteners, use Phillips-type machine screws of head profile flush with metal surface unless otherwise indicated.
 - 4. Finish heads of exposed fasteners to match finish of metal fastened unless otherwise indicated.
- B. Anchors, General: Use bolt heads of same basic metal as fastened metal unless otherwise indicated. Use metals that are noncorrosive and compatible with each metal anchored.

2.4 MISCELLANEOUS MATERIALS

- A. Welding Electrodes and Filler Metal: Select according to AWS specifications for metal alloy welded; use metal type and alloy as recommended in writing by producer of metal to be welded or filled and as required for color match, strength, and compatibility in fabricated items.
- B. Brazing Rods for Copper-Alloy Components: Type and alloy as recommended in writing by producer of metal to be brazed and as required for color match, strength, and compatibility in fabricated items.
- C. Brazing Rods for Cast-Iron Components: Type and alloy as recommended in writing by brazing-rod manufacturer and as required for strength and compatibility in fabricated items.
- D. Metal-Patching Compound: Two-part, polyester-resin metal-patching compound; knife-grade formulation as recommended in writing by manufacturer for type of metal repair indicated, tooling time required for the detail of work, and site conditions. Compound shall be produced for filling metal that has deteriorated because of corrosion. Filler shall be capable of filling deep holes and spreading to feather edge.
- E. Nonshrink, Nonmetallic Grout: Factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C 1107/C 1107M. Provide grout specifically recommended in writing by manufacturer for interior and exterior applications.

2.5 METAL FABRICATION

A. Fabricate repairs of decorative metal items and components in sizes and profiles to match existing decorative metal, with accurate curves, lines, and angles. Mill joints to a tight, hairline fit. Form assemblies and joints exposed to weather to resist water penetration and retention.

- B. Provide rebates, lugs, and brackets necessary to assemble components and to attach to existing work. Drill and tap for fasteners. Use concealed fasteners where possible; use exposed fasteners to match existing work.
- C. Comply with AWS for recommended practices in welding and brazing. Provide welds and brazes behind finished surfaces without distorting or discoloring exposed side. Clean exposed welded and brazed joints of flux, and dress exposed and contact surfaces.
- D. Castings: Fabricate castings free of warp, cracks, blowholes, or other defects that impair strength or appearance. Grind, wire brush, sandblast, and buff castings to remove seams, gate marks, casting flash, and other casting marks.
 - 1. Finish castings to match existing decorative metalwork.
 - 2. Replacement Casting for Handrail Bracket: Duplicate existing handrail bracket on the cast-iron railing of first-floor stairs in the lobby. Make molds from this bracket to create new cast-iron brackets.
- E. Refer to Specification Section 09 91 13 Exterior Painting for metal refinishing products.

PART 3 - EXECUTION

3.1 DECORATIVE METAL REPAIR, GENERAL

- A. Execution of the Work: In repairing items, disturb remaining existing work as minimally as possible and as follows:
 - 1. Stabilize decorative metal to reestablish structural integrity and weather resistance while maintaining the existing form of each item.
 - 2. Remove deteriorated coatings and corrosion.
 - 3. Sequence work to minimize time before protective coatings are reapplied.
 - 4. Repair items where stabilization is insufficient to stop progress of deterioration.
 - 5. Repair items in place where possible.
 - 6. Replace or reproduce items where indicated or scheduled.
 - 7. Install temporary protective measures to stabilize decorative metal that is indicated to be repaired later.
- B. Mechanical Coating Removal: Use gentle methods, such as scraping and wire brushing, that will not abrade metal substrate.
- C. Repair Decorative Metal Item: Match existing materials and features.
- D. Replace Decorative Metal Component: Where indicated, duplicate and replace items with new metal matching existing metal.
 - 1. Replace heavily deteriorated or missing parts or features of decorative metal with compatible materials, using surviving prototypes to create patterns or molds for duplicate replacements.

3.2 PREPARATORY CLEANING

A. General: Refer to Specification Section 05 01 70.51 Decortative Metal Cleaning.

3.3 REMOVAL, REPAIR, AND REINSTALLATION

- A. General: Perform removal work as required in Section 02 41 19 "Selective Demolition" for specific requirements relating to selectively demolishing construction, including decorative metal removal for repair or reinstallation elsewhere.
- B. Defects in Painted Metal Surfaces: Repair nonload-bearing defects in existing metal surfaces, including dents and gouges more than 1/8 inch deep or 1 inch across, and all holes and cracks by filling with metal-patching compound and sanding smooth. Remove burrs and protruding fasteners. Prime iron and steel surfaces immediately after repair to prevent flash rusting.
- C. Installing Sealant: See Section 07 92 00 "Joint Sealants."

3.4 PRIMING

- A. Repair Primer: Apply immediately after completing a repair.
- B. Finish Primer: Apply as soon after cleaning as possible.

END OF SECTION 05 01 70.61

SECTION 05 12 00 - STRUCTURAL STEEL FRAMING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Structural steel, including:
 - a. Lintels
 - b. Loose angles
 - c. Embed plates
 - d. Bearing plates
 - 2. Shrinkage-resistant grout.

1.3 DEFINITIONS

A. Structural Steel: Elements of the structural frame indicated on Drawings and as described in ANSI/AISC 303.

1.4 COORDINATION

- A. Coordinate selection of shop primers with topcoats to be applied over them. Comply with paint and coating manufacturers' written recommendations to ensure that shop primers and topcoats are compatible with one another.
- B. Coordinate installation of anchorage items to be embedded in or attached to other construction without delaying the Work. Provide setting diagrams, sheet metal templates, instructions, and directions for installation.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Show fabrication of structural-steel components. The fabricator shall neither use nor reproduce any part of the Drawings as part of the shop or erection drawings.

- 1. Include details of cuts, connections, splices, camber, holes, and other pertinent data.
- 2. Include embedment Drawings.
- 3. Indicate welds by standard AWS symbols, distinguishing between shop and field welds, and show size, length, and type of each weld. Show backing bars that are to be removed and supplemental fillet welds where backing bars are to remain.
- 4. Indicate type, size, and length of bolts, distinguishing between shop and field bolts. Identify pretensioned and slip-critical, high-strength bolted connections.
- 5. Identify members not to be shop primed.
- C. Delegated-Design Submittal: For structural-steel connections indicated on Drawings to comply with design loads (other than simple shear connections), include analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.6 INFORMATIONAL SUBMITTALS

- A. Welding certificates.
- B. Mill test reports for structural-steel materials, including chemical and physical properties.
- C. Product Test Reports:
- D. Survey of existing conditions.
- E. Source quality-control reports.
- F. Field quality-control reports.

1.7 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel in accordance with AWS D1.1.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Store materials to permit easy access for inspection and identification. Keep steel members off ground and spaced by using pallets, dunnage, or other supports and spacers. Protect steel members and packaged materials from corrosion and deterioration.
 - 1. Do not store materials on structure in a manner that might cause distortion, damage, or overload to members or supporting structures. Repair or replace damaged materials or structures as directed.
- B. Store fasteners in a protected place in sealed containers with manufacturer's labels intact.
 - 1. Fasteners may be repackaged provided Owner's testing and inspecting agency observes repackaging and seals containers.
 - 2. Clean and relubricate bolts and nuts that become dry or rusty before use.

- 3. Comply with manufacturers' written recommendations for cleaning and lubricating ASTM F3125, Grade F1852 bolt assemblies and for retesting bolt assemblies after lubrication.
- C. Deliver items which are to be embedded in cast-in-place concrete or masonry, in ample time to not delay work.
- D. Deliver materials to site at such intervals to insure uninterrupted progress of work.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Comply with applicable provisions of the following specifications and documents:
 - 1. ANSI/AISC 303.
 - 2. ANSI/AISC 360.
 - 3. RCSC's "Specification for Structural Joints Using High-Strength Bolts."
- B. Connections: Provide details of connections required by the Contract Documents to be selected or completed by structural-steel fabricator to withstand loads indicated and comply with other information and restrictions indicated.
 - 1. Select and complete connections using schematic details indicated and AISC 360.
 - 2. Where end reactions are not shown on the Contract Documents, design simple shear connections for at least 50% of the allowable uniform load given in the beam tables in Chapter 3 of the AISC "Steel Construction Manual" for the given span and beam size. Use allowable stress design values unless noted otherwise.

2.2 STRUCTURAL-STEEL MATERIALS

- A. W-Shapes: ASTM A992 Grade 50.
- B. Channels, Angles: ASTM A36.
- C. Plate and Bar: ASTM A36.
- D. Cold-Formed Hollow Structural Sections: ASTM A500, Grade C, structural tubing.
- E. Steel Pipe: ASTM A53/A53M, Type E or Type S, Grade B.
 - 1. Finish: Black except where indicated to be galvanized.
- F. Welding Electrodes: Comply with AWS requirements.

2.3 BOLTS AND CONNECTORS

- A. High-Strength A325 Bolts, Nuts, and Washers: ASTM F3125, Grade A325, Type 1, heavy-hex steel structural bolts; ASTM A563, Grade DH, heavy-hex carbon-steel nuts; and ASTM F436, Type 1, hardened carbon-steel washers; all with plain finish.
 - 1. Direct-Tension Indicators: ASTM F959, Type 325-1, compressible-washer type with plain finish.
- B. High-Strength A490 Bolts, Nuts, and Washers: ASTM F3125, Grade A490, Type 1, heavy-hex steel structural bolts or Grade F2280 tension-control, bolt-nut-washer assemblies with splined ends; ASTM A563, Grade DH, heavy-hex carbon-steel nuts; and ASTM F436, Type 1, hardened carbon-steel washers; all with plain finish.
 - 1. Direct-Tension Indicators: ASTM F959/F959M, Type 490-1, compressible-washer type with plain finish.
- C. Zinc-Coated High-Strength A325 Bolts, Nuts, and Washers: ASTM F3125, Grade A325, Type 1, heavy-hex steel structural bolts; ASTM A563, Grade DH, heavy-hex carbon-steel nuts; and ASTM F436, Type 1, hardened carbon-steel washers.
 - 1. Finish: Hot-dip or mechanically deposited zinc coating.
 - 2. Direct-Tension Indicators: ASTM F959, Type 325-1, compressible-washer type with mechanically deposited zinc coating finish.
- D. Tension-Control, High-Strength Bolt-Nut-Washer Assemblies: ASTM F3125, Grade F1852, Type 1, heavy-hex or round head assemblies, consisting of steel structural bolts with splined ends; ASTM A563, Grade DH, heavy-hex carbon-steel nuts; and ASTM F436, Type 1, hardened carbon-steel washers.
 - 1. Finish: Plain.

2.4 RODS

- A. Anchor Rods: ASTM F1554, unheaded type unless noted otherwise.
 - 1. Grade: As indicated.
 - 2. Configuration: Straight.
 - 3. Nuts: ASTM A563 heavy-hex carbon steel.
 - 4. Plate Washers: ASTM A36 carbon steel.
 - 5. Washers: ASTM F436, Type 1, hardened carbon steel.
 - 6. Finish: Plain unless noted otherwise.
- B. Threaded Rods: ASTM A36 unless noted otherwise.
 - 1. Nuts: ASTM A563 heavy-hex carbon steel.
 - 2. Washers: ASTM F436, Type 1, hardened or ASTM A36 carbon steel.

3. Finish: Plain unless noted otherwise.

2.5 PRIMER

- A. Steel Primer:
 - 1. Comply with Painting and High Performance Coating requirements in Division 9.
 - 2. Unless noted otherwise in Division 9, Fabricator's standard lead- and chromate-free, nonasphaltic, rust-inhibiting primer complying with MPI#79 and compatible with topcoat.
- B. Galvanizing Repair Paint: SSPC-Paint 20.
- C. Refer to Division 9 for painting specifications.

2.6 SHRINKAGE-RESISTANT GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C1107, factory-packaged, nonmetallic aggregate grout, noncorrosive and nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

2.7 FABRICATION

- A. Structural Steel: Fabricate and assemble in shop to greatest extent possible. Fabricate in accordance with ANSI/AISC 303 and to ANSI/AISC 360.
 - 1. Camber structural-steel members where indicated.
 - 2. Fabricate beams with rolling camber up.
 - 3. Identify high-strength structural steel in accordance with ASTM A6/A6M and maintain markings until structural-steel framing has been erected.
 - 4. Mark and match-mark materials for field assembly.
 - 5. Complete structural-steel assemblies, including welding of units, before starting shop-priming operations.
 - 6. Provide finish surfaces of members exposed in final structure free of markings, burrs, and other defects.
- B. Fabricate for delivery sequence, which will expedite erection and minimize field handling of materials.
- C. Thermal Cutting: Perform thermal cutting by machine to greatest extent possible.
 - 1. Plane thermally cut edges to be welded to comply with requirements in AWS D1.1.
- D. Bolt Holes: Cut, drill, mechanically thermal cut (unless noted otherwise), or punch standard bolt holes perpendicular to metal surfaces.
- E. Finishing: Accurately finish ends of columns and other members transmitting bearing loads.

- F. Cleaning: Clean and prepare steel surfaces that are to remain unpainted in accordance with SSPC-SP 1 unless noted otherwise.
- G. Holes: Provide holes required for securing other work to structural steel and for other work to pass through steel members.
 - 1. Cut, drill, or punch holes perpendicular to steel surfaces.
 - 2. Baseplate Holes: Cut, drill, mechanically thermal cut, or punch holes perpendicular to steel surfaces.
 - 3. Weld threaded nuts to framing and other specialty items indicated to receive other work.
- H. Metal Surfaces: For fabrication of work which will be exposed to view, use only material which are smooth and free of surface blemishes including pitting, seam marks, roller marks, rolled trade names, and roughness. Remove such blemishes by grinding, or by welding and grinding, prior to cleaning, treating and application of surface finishes.

2.8 SHOP CONNECTIONS

- A. High-Strength Bolts: Shop install high-strength bolts in accordance with RCSC's "Specification for Structural Joints Using High-Strength Bolts" for type of bolt and type of joint specified.
 - 1. Joint Type: Snug tightened.
- B. Weld Connections: Comply with AWS D1.1 for tolerances, appearances, welding procedure specifications, weld quality, and methods used in correcting welding work.
 - 1. Assemble and weld built-up sections by methods that maintain true alignment of axes without exceeding tolerances in ANSI/AISC 303 for mill material.
 - 2. For welding of reinforcing bars to structural steel comply with AWS D1.4 for requirements including preheat as required.

2.9 GALVANIZING

- A. Hot-Dip Galvanized Finish: Apply zinc coating by the hot-dip process to structural steel in accordance with ASTM A123.
 - 1. Fill vent and drain holes that are exposed in the finished Work unless they function as weep holes, by plugging with zinc solder and filing off smooth.

2.10 SHOP PRIMING

- A. Shop prime steel surfaces, except the following:
 - 1. Surfaces embedded in concrete or mortar. Extend priming of partially embedded members to a depth of 2 inches.
 - 2. Surfaces to be field welded.

- 3. Surfaces of high-strength bolted, slip-critical connections.
- 4. Surfaces to receive sprayed fire-resistive materials (applied fireproofing).
- 5. Galvanized surfaces unless indicated to be painted.
- 6. Unless noted elsewhere.
- B. Surface Preparation of Steel: Clean surfaces to be painted. Remove loose rust and mill scale and spatter, slag, or flux deposits. Coordinate minimum surface-preparation requirements with selections of primers, paint, and coating systems.
- C. Priming: Immediately after surface preparation, apply primer in accordance with manufacturer's written instructions and at rate recommended by SSPC to provide a minimum dry film thickness of 1.5 mils. Use priming methods that result in full coverage of joints, corners, edges, and exposed surfaces.
 - 1. Stripe paint corners, crevices, bolts, welds, and sharp edges.
 - 2. Apply two coats of shop paint to surfaces that are inaccessible after assembly or erection. Change color of second coat to distinguish it from first.

2.11 SOURCE QUALITY CONTROL

- A. Testing Agency: Contractor shall engage a qualified testing agency to perform shop tests and inspections.
 - 1. Allow testing agency access to places where structural-steel work is being fabricated or produced to perform tests and inspections.
 - 2. Bolted Connections: Inspect shop-bolted connections in accordance with RCSC's "Specification for Structural Joints Using High-Strength Bolts."
 - 3. Welded Connections: Visually inspect shop-welded connections in accordance with AWS D1.1 and the following inspection procedures, at testing agency's option:
 - a. Liquid Penetrant Inspection: ASTM E165.
 - b. Magnetic Particle Inspection: ASTM E709; performed on root pass and on finished weld. Cracks or zones of incomplete fusion or penetration are not accepted.
 - c. Ultrasonic Inspection: ASTM E164.
 - d. Radiographic Inspection: ASTM E94.
 - 4. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify, with certified steel erector present, elevations of concrete- and masonry-bearing surfaces and locations of anchor rods, bearing plates, and other embedments for compliance with requirements.

- 1. Prepare a certified survey of existing conditions. Include bearing surfaces, anchor rods, bearing plates, and other embedments showing dimensions, locations, angles, and elevations.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Provide temporary shores, guys, braces, and other supports during erection to keep structural steel secure, plumb, and in alignment against temporary construction loads and loads equal in intensity to design loads. Remove temporary supports when permanent structural steel, connections, and bracing are in place unless otherwise indicated on Drawings.

3.3 ERECTION

- A. Set structural steel accurately in locations and to elevations indicated and in accordance with ANSI/AISC 303 and ANSI/AISC 360.
- B. Anchor Rods: Furnish anchor rods and other connectors required for securing structural steel to foundations and other in-place work.
 - 1. Furnish templates and other devices as necessary for presetting rods and other anchors to accurate locations.
 - 2. Refer to Division 3 of these specifications for anchor rod installation requirements in concrete.
- C. Baseplates, Bearing Plates, and Leveling Plates: Clean concrete- and masonry-bearing surfaces of bond-reducing materials, and roughen surfaces prior to setting plates. Clean bottom surface of plates.
 - 1. Set plates for structural members on wedges, shims, or setting nuts as required.
 - 2. Weld plate washers to top of baseplate.
 - 3. Snug-tighten anchor rods after supported members have been positioned and plumbed. Do not remove wedges or shims but, if protruding, cut off flush with edge of plate before packing with grout.
 - 4. Promptly pack shrinkage-resistant grout solidly between bearing surfaces and plates, so no voids remain. Neatly finish exposed surfaces; protect grout and allow to cure. Comply with manufacturer's written installation instructions for grouting.
- D. Maintain erection tolerances of structural steel within ANSI/AISC 303.
- E. Align and adjust various members that form part of complete frame or structure before permanently fastening. Before assembly, clean bearing surfaces and other surfaces that are in permanent contact with members. Perform necessary adjustments to compensate for discrepancies in elevations and alignment.

- 1. Level and plumb individual members of structure. Slope roof framing members to slopes indicated on Drawings.
- 2. Make allowances for difference between temperature at time of erection and mean temperature when structure is completed and in service.
- F. Splice members only where indicated.
- G. Do not use thermal cutting during erection unless written approval is provided by Engineer of Record. Finish thermally cut sections within smoothness limits in AWS D1.1.
- H. Do not enlarge unfair holes in members by burning or using drift pins. Ream holes that must be enlarged to admit bolts.

3.4 FIELD CONNECTIONS

- A. High-Strength Bolts: Install high-strength bolts in accordance with RCSC's "Specification for Structural Joints Using High-Strength Bolts" for bolt and joint type specified.
 - 1. Joint Type: Snug tightened or Pretensioned as indicated on Drawings.
- B. Weld Connections: Comply with AWS D1.1 for tolerances, appearances, welding procedure specifications, weld quality, and methods used in correcting welding work.
 - 1. Comply with ANSI/AISC 303 for bearing, alignment, adequacy of temporary connections, and removal of paint on surfaces adjacent to field welds.
 - 2. Assemble and weld built-up sections by methods that maintain true alignment of axes without exceeding tolerances in ANSI/AISC 303 for mill material.

3.5 REPAIR

- A. Galvanized Surfaces: Clean areas where galvanizing is damaged or missing, and repair galvanizing to comply with ASTM A780.
- B. Touchup Painting:
 - 1. Immediately after erection, clean exposed areas where primer is damaged or missing, and paint with the same material as used for shop painting to comply with SSPC-PA 1 for touching up shop-painted surfaces.
 - a. Clean and prepare surfaces by SSPC-SP 2 hand-tool cleaning or SSPC-SP 3 power-tool cleaning.
 - 2. Cleaning and touchup painting are specified in Division 9.
- C. Touchup Priming: Cleaning and touchup priming are specified in Division 9.

3.6 FIELD QUALITY CONTROL

- A. Structural Inspections: Contractor shall engage a special inspector to perform the following special inspections:
 - 1. Visually inspect structural steel elements as follows:
 - a. Inspect 100% of beam and girder construction and assemblies
 - b. Inspect 100% of all moment frames
 - 2. Visually inspect steel as it is received for possible damage in shipping, workmanship, and piece marking.
 - 3. Review certified mill test reports and identification markings on wide-flange shapes, high-strength bolts, nuts and welding electrodes.
 - 4. Verify that steel member sizes and steel grade conform to the contract documents and approved shop drawings.
 - 5. Check the installation of base plates for proper leveling.
 - 6. Verify the proper grout type and installation procedures are followed.
 - 7. Inspect field welded connections as follows:
 - a. Inspect 100% of all field welds.
 - b. Perform pre-welding inspections to verify that materials (i.e. structural steel, weld filler material, etc.), welding procedures, and welding personnel qualifications are appropriate (including storage of welding rods).
 - c. Visually inspect field welds according to AWS D1.1.
 - d. Verify welding procedures are in accordance with AWS requirements.
 - e. Inspect pre-heat, post-heat and surface preparation between passes.
 - f. Verify size and length of fillet welds.
 - g. Verify that welds are clean; welder identification is legible; size, length and location of welds; verify that welds meet acceptance criteria; placement of reinforcement fillets; removal of backing bars and weld tabs as required; and repair activities.
 - h. Provide continuous inspection for full-penetration and partial-penetration groove welds and multi-pass fillet welds.
 - 8. Inspect bolted connections as follows:
 - a. Inspect 100% of all bolted connections.
 - b. For slip-critical bolted connections, verify installation is performed in accordance with one of the following methods:
 - 1) Turn-of-Nut: According to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts."
 - 2) Calibrated Wrench: According to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts."
 - 3) Twist-off Tension Control Bolt: ASTM F 1852.
 - 4) Direct-Tension Control Bolt: ASTM F 1852.

- c. For all bolted connections, verify quantity, size and grade of bolts, required surface preparation and proper fit-up of connected elements.
- 9. Inspect steel frame for compliance with structural drawings, including bracing, member configuration and connection details.
- B. Testing Agency: Contractor shall engage a qualified testing agency to perform tests and inspections.
 - 1. Bolted Connections: Inspect and test bolted connections in accordance with RCSC's "Specification for Structural Joints Using High-Strength Bolts."
 - 2. Welded Connections: Visually inspect field welds in accordance with AWS D1.1.
 - a. In addition to visual inspection, test and inspect field welds in accordance with AWS D1.1 and the following inspection procedures, at testing agency's option:
 - 1) Liquid Penetrant Inspection: ASTM E165.
 - 2) Magnetic Particle Inspection: ASTM E709; performed on root pass and on finished weld. Cracks or zones of incomplete fusion or penetration are not accepted.
 - 3) Ultrasonic Inspection: ASTM E164.
 - 4) Radiographic Inspection: ASTM E94.

END OF SECTION 05 12 00

SECTION 05 50 00 - METAL FABRICATIONS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Note that some items in list below are not described in detail in Part 2. These items are covered by material requirements and articles such as "Miscellaneous Framing and Supports," but they must be indicated in detail on Drawings. Also note that steel framing, supports, elevator machine beams, hoist beams, divider beams, and door frames that are attached to steel frame are specified in Section 05 12 00 "Structural Steel Framing."
 - 2. Steel framing and supports for overhead doors.
 - 3. Steel framing and supports for countertops.
 - 4. Steel framing and supports for applications where framing and supports are not specified in other Sections.
 - 5. Metal ladders.
 - 6. Miscellaneous steel trim including steel angle corner guards, steel edgings and loading-dock edge angles.
 - 7. Anchor bolts, steel pipe sleeves, slotted-channel inserts, and wedge-type inserts indicated to be cast into concrete or built into unit masonry.
 - 8. Steel weld plates and angles for casting into concrete for applications where they are not specified in other Sections.
 - 9. Delegated-Design steel plate canopy and building numbers to be secured to and tie into curtainwall and building envelope at new construction entry.
 - 10. Steel channel with welded end caps accent ribbon at new construction exterior elevations.
 - 11. Delegated-Design steel frame structure supporting wood sun screening element at "The Porch".
 - 12. All miscellaneous metal fabrications, clips, angles, framing, supports and other items which are required and not indicated as work of another section.
- B. Related Requirements:
 - 1. Section 03 30 00 "Cast-in-Place Concrete" for installing anchor bolts, steel pipe sleeves, slotted-channel inserts, and other items cast into concrete.
 - 2. Section 05 05 19 "Post-Installed Anchors" for installing wedge-type inserts into concrete.
 - 3. Section 04 20 00 "Unit Masonry" for installing loose lintels, anchor bolts, and other items built into unit masonry.

4. Section 05 12 00 "Structural Steel Framing."

1.2 COORDINATION

- A. Coordinate selection of shop primers with topcoats to be applied over them. Comply with paint and coating manufacturers' written recommendations to ensure that shop primers and topcoats are compatible with one another.
- B. Coordinate installation of metal fabrications that are anchored to or that receive other work. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.

1.3 ACTION SUBMITTALS

A. Shop Drawings: Show fabrication and installation details. Include plans, elevations, sections, and details of metal fabrications and their connections. Show anchorage and accessory items.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For professional engineer.
- B. Mill Certificates: Signed by stainless-steel manufacturers, certifying that products furnished comply with requirements.
- C. Welding certificates.
- D. Paint Compatibility Certificates: From manufacturers of topcoats applied over shop primers, certifying that shop primers are compatible with topcoats.
- E. Research/Evaluation Reports: For post-installed anchors, from ICC-ES.

1.5 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. Retain applicable subparagraphs below.
 - 2. AWS D1.1/D1.1M, "Structural Welding Code Steel."
 - 3. AWS D1.2/D1.2M, "Structural Welding Code Aluminum."
 - 4. AWS D1.6/D1.6M, "Structural Welding Code Stainless Steel."

METAL FABRICATIONS

1.6 FIELD CONDITIONS

A. Field Measurements: Verify actual locations of walls and other construction contiguous with metal fabrications by field measurements before fabrication.

PART 2 - PRODUCTS

2.1 METALS

- A. Metal Surfaces, General: Provide materials with smooth, flat surfaces unless otherwise indicated. For metal fabrications exposed to view in the completed Work, provide materials without seam marks, roller marks, rolled trade names, or blemishes.
- B. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.
- C. Steel Tubing: ASTM A 500/A 500M, cold-formed steel tubing.
- D. Steel Pipe: ASTM A 53/A 53M, Standard Weight unless otherwise indicated.

2.2 FASTENERS

- A. General: Unless otherwise indicated, provide Type 304 stainless-steel fasteners for exterior use and zinc-plated fasteners with coating complying with ASTM B 633 or ASTM F 1941,Class Fe/Zn 5, at exterior walls. Select fasteners for type, grade, and class required.
 - 1. Provide stainless-steel fasteners for fastening aluminum.
 - 2. Provide stainless-steel fasteners for fastening stainless steel.
- B. Steel Bolts and Nuts: Regular hexagon-head bolts, ASTM A 307, Grade A; with hex nuts, ASTM A 563; and, where indicated, flat washers.
- C. Steel Bolts and Nuts: Regular hexagon-head bolts, ASTM A 325, Type 3; with hex nuts, ASTM A 563, Grade C3; and, where indicated, flat washers.
- D. Stainless-Steel Bolts and Nuts: Regular hexagon-head annealed stainless-steel bolts, ASTM F 593; with hex nuts, ASTM F 594; and, where indicated, flat washers; Alloy Group 2.
- E. Anchor Bolts: ASTM F 1554, Grade 36, of dimensions indicated; with nuts, ASTM A 563; and, where indicated, flat washers.
 - 1. Hot-dip galvanize or provide mechanically deposited, zinc coating where item being fastened is indicated to be galvanized.

- F. Anchors, General: Anchors capable of sustaining, without failure, a load equal to six times the load imposed when installed in unit masonry and four times the load imposed when installed in concrete, as determined by testing according to ASTM E 488/E 488M, conducted by a qualified independent testing agency.
- G. Cast-in-Place Anchors in Concrete: Either threaded type or wedge type unless otherwise indicated; galvanized ferrous castings, either ASTM A 47/A 47M malleable iron or ASTM A 27/A 27M cast steel. Provide bolts, washers, and shims as needed, all hot-dip galvanized per ASTM F 2329.
- H. Post-Installed Anchors: See Section 05 05 19.
- I. Slotted-Channel Inserts: Cold-formed, hot-dip galvanized-steel box channels (struts) complying with MFMA-4, 1-5/8 by 7/8 inches by length indicated with anchor straps or studs not less than 3 inches long at not more than 8 inches o.c. Provide with temporary filler and tee-head bolts, complete with washers and nuts, all zinc-plated to comply with ASTM B 633, Class Fe/Zn 5, as needed for fastening to inserts.

2.3 MISCELLANEOUS MATERIALS

A. Shop Primers: Provide primers that comply with Section 09 91 13 "Exterior Painting," Section 09 91 23 Interior Painting," and Section 09 96 00 "High-Performance Coatings."

2.4 FABRICATION, GENERAL

- A. Shop Assembly: Preassemble items in the shop to greatest extent possible. Disassemble units only as necessary for shipping and handling limitations. Use connections that maintain structural value of joined pieces. Clearly mark units for reassembly and coordinated installation.
- B. Cut, drill, and punch metals cleanly and accurately. Remove burrs and ease edges to a radius of approximately 1/32 inchunless otherwise indicated. Remove sharp or rough areas on exposed surfaces.
- C. Form bent-metal corners to smallest radius possible without causing grain separation or otherwise impairing work.
- D. Weld corners and seams continuously to comply with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface.

E. Where units are indicated to be cast into concrete or built into masonry, equip with integrally welded steel strap anchors, 1/8 by 1-1/2 inches, with a minimum 6-inchembedment and 2-inchhook, not less than 8 inchesfrom ends and corners of units and 24 incheso.c., unless otherwise indicated.

2.5 MISCELLANEOUS FRAMING AND SUPPORTS

- A. General: Provide steel framing and supports not specified in other Sections as needed to complete the Work.
- B. Fabricate units from steel shapes, plates, and bars of welded construction unless otherwise indicated. Fabricate to sizes, shapes, and profiles indicated and as necessary to receive adjacent construction.
- C. Galvanize miscellaneous framing and supports where indicated.

2.6 METAL LADDERS

- A. General:
 - 1. Comply with ANSI A14.3.
 - 2. Basis of design "Precision Ladders, LLC Fixed Ladder with Safety Cage and Parapet Platform
- B. Aluminum Ladders:
 - 1. Space siderails 24 inchesapart unless otherwise indicated.
 - 2. Siderails: Continuous, 2 1/2" x 1 1/16" x 1/8" continuous aluminum channels with eased edges.
 - 3. Treads: 2 1/4" x 3/4" x 1/4" serrated aluminum tread .
 - 4. Fit rungs in centerline of siderails; plug-weld and grind smooth on outer rail faces.
 - 5. Provide nonslip surfaces on top of each rung, either by coating rung with aluminum-oxide granules set in epoxy-resin adhesive or by using a type of manufactured rung filled with aluminum-oxide grout.
 - 6. Support each ladder at top and bottom and not more than 48incheso.c. with welded or bolted brackets.
- C. Aluminum Ladder Safety Cages:
 - 1. Primary Hoops: 1/4-by-4-inch flat bar hoops.
 - 2. Secondary Intermediate Hoops: 1/4-by-2-inch flat bar hoops.

- 3. Vertical Bars: 1/4-by-2-inch flat bars secured to each hoop.
- D. Platform
 - 1. Aluminum toeboard
 - 2. Bar grating surface

2.7 MISCELLANEOUS STEEL TRIM

- A. Unless otherwise indicated, fabricate units from steel shapes, plates, and bars of profiles shown with continuously welded joints and smooth exposed edges. Miter corners and use concealed field splices where possible.
- B. Provide cutouts, fittings, and anchorages as needed to coordinate assembly and installation with other work.
 - 1. Provide with integrally welded steel strap anchors for embedding in concrete or masonry construction.
- C. Galvanize and prime exterior miscellaneous steel trim.

2.8 STEEL WELD PLATES AND ANGLES

A. Provide steel weld plates and angles not specified in other Sections, for items supported from concrete construction as needed to complete the Work. Provide each unit with no fewer than two integrally welded steel strap anchors for embedding in concrete.

2.9 FINISHES, GENERAL

- A. Finish metal fabrications after assembly.
- B. Finish exposed surfaces to remove tool and die marks and stretch lines, and to blend into surrounding surface.

2.10 STEEL AND IRON FINISHES

- A. Galvanizing: Hot-dip galvanize items as indicated to comply with ASTM A 153/A 153M for steel and iron hardware and with ASTM A 123/A 123M for other steel and iron products.
 - 1. Do not quench or apply post galvanizing treatments that might interfere with paint adhesion.
- B. Preparation for Shop Priming Galvanized Items: After galvanizing, thoroughly clean railings of grease, dirt, oil, flux, and other foreign matter, and treat with metallic phosphate process.

- C. Shop prime iron and steel items not indicated to be galvanized unless they are to be embedded in concrete, sprayed-on fireproofing, or masonry, or unless otherwise indicated.
- D. Preparation for Shop Priming: Prepare surfaces to comply with [requirements indicated below:
 - 1. Items Indicated to Receive Primers Specified in Section 09 96 00 "High-Performance Coatings": SSPC-SP 6/NACE No. 3, "Commercial Blast Cleaning."
 - 2. Other Items: SSPC-SP 3, "Power Tool Cleaning."
- E. Shop Priming: Apply shop primer to comply with SSPC-PA 1, "Paint Application Specification No. 1: Shop, Field, and Maintenance Painting of Steel," for shop painting.
 - 1. Stripe paint corners, crevices, bolts, welds, and sharp edges.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Cutting, Fitting, and Placement: Perform cutting, drilling, and fitting required for installing metal fabrications. Set metal fabrications accurately in location, alignment, and elevation; with edges and surfaces level, plumb, true, and free of rack; and measured from established lines and levels.
- B. Fit exposed connections accurately together to form hairline joints. Weld connections that are not to be left as exposed joints but cannot be shop welded because of shipping size limitations. Do not weld, cut, or abrade surfaces of exterior units that have been hot-dip galvanized after fabrication and are for bolted or screwed field connections.
- C. Field Welding: Comply with the following requirements:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface.
- D. Fastening to In-Place Construction: Provide anchorage devices and fasteners where metal fabrications are required to be fastened to in-place construction. Provide threaded fasteners for use with concrete and masonry inserts, toggle bolts, through bolts, lag screws, wood screws, and other connectors.

- E. Provide temporary bracing or anchors in formwork for items that are to be built into concrete, masonry, or similar construction.
- F. Corrosion Protection: Coat concealed surfaces of aluminum that come into contact with grout, concrete, masonry, wood, or dissimilar metals with the following:
 - 1. Cast Aluminum: Heavy coat of bituminous paint.
 - 2. Extruded Aluminum: Two coats of clear lacquer.

3.2 INSTALLING MISCELLANEOUS FRAMING AND SUPPORTS

- A. General: Install framing and supports to comply with requirements of items being supported, including manufacturers' written instructions and requirements indicated on Shop Drawings.
- B. Anchor supports for overhead doors securely to, and rigidly brace from, building structure.

3.3 INSTALLING PIPE GUARDS

A. Provide pipe guards at exposed vertical pipes in parking garage where not protected by curbs or other barriers. Install by bolting to wall or column with expansion anchors. Provide four 3/4-inch bolts at each pipe guard. Mount pipe guards with top edge 26 inches above driving surface.

3.4 INSTALLING BEARING AND LEVELING PLATES

- A. Clean concrete and masonry bearing surfaces of bond-reducing materials, and roughen to improve bond to surfaces. Clean bottom surface of plates.
- B. Set bearing and leveling plates on wedges, shims, or leveling nuts. After bearing members have been positioned and plumbed, tighten anchor bolts. Do not remove wedges or shims but, if protruding, cut off flush with edge of bearing plate before packing with nonshrink grout. Pack grout solidly between bearing surfaces and plates to ensure that no voids remain.

3.5 ADJUSTING AND CLEANING

- A. Touchup Painting: Immediately after erection, clean field welds, bolted connections, and abraded areas. Paint uncoated and abraded areas with the same material as used for shop painting to comply with SSPC-PA 1 for touching up shop-painted surfaces.
 - 1. Apply by brush or spray to provide a minimum 2.0-mildry film thickness.
- B. Galvanized Surfaces: Clean field welds, bolted connections, and abraded areas and repair galvanizing to comply with ASTM A 780/A 780M.

END OF SECTION 05 50 00

METAL FABRICATIONS

SECTION 05 52 13 - PIPE AND TUBE RAILINGS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Steel pipe and tube railings.
 - 2. Aluminum pipe and tube railings. (Exterior)

1.2 ACTION SUBMITTALS

- A. Product Data: For the following:
 - 1. Railing brackets.
 - 2. Grout, anchoring cement, and paint products.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
- C. Samples: For each type of exposed finish required.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 01 40 00 "Quality Requirements," to design railings, including attachment to building construction.
- B. Refer to A8 series for interior stair railing and guardrail details.
- C. Structural Performance: Railings, including attachment to building construction, shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated:
 - 1. Handrails and Top Rails of Guards:
 - a. Uniform load of 50 lbf/ ft. applied in any direction.
 - b. Concentrated load of 200 lbf applied in any direction.
 - c. Uniform and concentrated loads need not be assumed to act concurrently.
 - 2. Infill of Guards:
 - a. Concentrated load of 50 lbf applied horizontally on an area of 1 sq. ft..

b. Infill load and other loads need not be assumed to act concurrently.

2.2 METALS, GENERAL

- A. Brackets, Flanges, and Anchors: Cast or formed metal of same type of material and finish as supported rails unless otherwise indicated.
 - 1. Provide type of bracket with flange tapped for concealed anchorage to threaded hanger bolt and that provides 1-1/2-inch clearance from inside face of handrail to finished wall surface.

2.3 STEEL AND IRON

- A. Pipe: ASTM A 53/A 53M, Type F or Type S, Grade A, Standard Weight (Schedule 40), unless another grade and weight are required by structural loads.
 - 1. Provide galvanized finish for exterior installations and where indicated.
- B. Plates, Shapes, and Bars: ASTM A 36/A 36M.

2.4 ALUMINUM

- A. Aluminum, General: Provide alloy and temper recommended by aluminum producer and finisher for type of use and finish indicated, and with not less than the strength and durability properties of alloy and temper designated below for each aluminum form required.
- B. Extruded Bars and] Tubing: ASTM B 221, Alloy 6063-T5/T52.
- C. Extruded Structural Pipe and Round Tubing: ASTM B 429/B 429M, Alloy 6063-T6.
- D. Plate and Sheet: ASTM B 209, Alloy 6061-T6.
- E. Castings: ASTM B 26/B 26M, Alloy A356.0-T6.

2.5 FASTENERS

- A. General: Provide the following:
 - 1. Ungalvanized-Steel Railings: Plated steel fasteners complying with ASTM B 633 or ASTM F 1941, Class Fe/Zn 5 for zinc coating.
 - 2. Hot-Dip Galvanized Railings: Type 304 stainless-steel or hot-dip zinc-coated steel fasteners complying with ASTM A 153/A 153M or ASTM F 2329 for zinc coating.
 - 3. Aluminum Railings: Type 304 stainless-steel fasteners.
 - 4. Stainless-Steel Railings: Type 304 stainless-steel fasteners.

- B. Post-Installed Anchors: Torque-controlled expansion anchors capable of sustaining, without failure, a load equal to 6 times the load imposed when installed in unit masonry and 4 times the load imposed when installed in concrete, as determined by testing according to ASTM E 488/E 488M, conducted by a qualified independent testing agency.
 - 1. Material for Interior Locations: Carbon-steel components zinc-plated to comply with ASTM B 633 or ASTM F 1941, Class Fe/Zn 5, unless otherwise indicated.
 - 2. Material for Exterior Locations and Where Stainless Steel Is Indicated: Alloy Group 1 stainless-steel bolts, ASTM F 593, and nuts, ASTM F 594.

2.6 MISCELLANEOUS MATERIALS

- A. Welding Rods and Bare Electrodes: Select according to AWS specifications for metal alloy welded.
- B. Etching Cleaner for Galvanized Metal: Complying with MPI#25.
- C. Galvanizing Repair Paint: High-zinc-dust-content paint complying with SSPC-Paint 20 and compatible with paints specified to be used over it.
- D. Shop Primers: Provide primers that comply with Section 09 91 23 "Interior Painting."
- E. Universal Shop Primer: Fast-curing, lead- and chromate-free, universal modified-alkyd primer complying with MPI#79 and compatible with topcoat.
- F. Shop Primer for Galvanized Steel: Primer formulated for exterior use over zinc-coated metal and compatible with finish paint systems indicated.
- G. Epoxy Intermediate Coat: Complying with MPI #77 and compatible with primer and topcoat.
- H. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D 1187/D 1187M.
- I. Nonshrink, Nonmetallic Grout: Factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C 1107/C 1107M. Provide grout specifically recommended by manufacturer for interior and exterior applications.

2.7 FABRICATION

- A. Cut, drill, and punch metals cleanly and accurately. Remove burrs and ease edges to a radius of approximately 1/32 inch unless otherwise indicated. Remove sharp or rough areas on exposed surfaces.
- B. Form work true to line and level with accurate angles and surfaces.
- C. Welded Connections: Cope components at connections to provide close fit, or use fittings designed for this purpose. Weld all around at connections, including at fittings.

- 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
- 2. Obtain fusion without undercut or overlap.
- 3. Remove flux immediately.
- 4. At exposed connections, finish exposed surfaces smooth and blended so no roughness shows after finishing and welded surface matches contours of adjoining surfaces.
- D. Welded Connections for Aluminum Pipe: Fabricate railings to interconnect members with concealed internal welds that eliminate surface grinding, using manufacturer's standard system of sleeve and socket fittings.
- E. Nonwelded Connections: Connect members with concealed mechanical fasteners and fittings. Fabricate members and fittings to produce flush, smooth, rigid, hairline joints.
- F. Form changes in direction by bending .
- G. For changes in direction made by bending, use jigs to produce uniform curvature for each repetitive configuration required. Maintain cross section of member throughout entire bend without buckling, twisting, cracking, or otherwise deforming exposed surfaces of components.
- H. Close exposed ends of railing members with prefabricated end fittings.
- I. Provide wall returns at ends of wall-mounted handrails unless otherwise indicated.
- J. Brackets, Flanges, Fittings, and Anchors: Provide wall brackets, flanges, miscellaneous fittings, and anchors to interconnect railing members to other work unless otherwise indicated.
 - 1. At brackets and fittings fastened to plaster or gypsum board partitions, provide crush-resistant fillers or other means to transfer loads through wall finishes to structural supports and prevent bracket or fitting rotation and crushing of substrate.

2.8 STEEL AND IRON FINISHES

- A. Galvanized Railings:
 - 1. Hot-dip galvanize exterior steel railings, including hardware, after fabrication.
 - 2. Comply with ASTM A 123/A 123M for hot-dip galvanized railings.
 - 3. Comply with ASTM A 153/A 153M for hot-dip galvanized hardware.
- B. Preparing Galvanized Railings for Shop Priming: After galvanizing, thoroughly clean railings of grease, dirt, oil, flux, and other foreign matter, and treat with etching cleaner.
- C. Preparation for Shop Priming: Prepare uncoated ferrous-metal surfaces to comply with SSPC-SP 3, "Power Tool Cleaning."

D. Primer Application: Apply shop primer to prepared surfaces of railings unless otherwise indicated. Comply with requirements in SSPC-PA 1, "Shop, Field, and Maintenance Painting of Steel," for shop painting. Primer need not be applied to surfaces to be embedded in concrete or masonry.

2.9 ALUMINUM FINISHES

- A. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in the same piece are unacceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.
- B. Clear Anodic Finish: AAMA 611, AA-M12C22A41.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Set railings accurately in location, alignment, and elevation; measured from established lines and levels and free of rack.
 - 1. Do not weld, cut, or abrade surfaces of railing components that are coated or finished after fabrication and that are intended for field connection by mechanical or other means without further cutting or fitting.
 - 2. Set posts plumb within a tolerance of 1/16 inch in 3 feet.
 - 3. Align rails so variations from level for horizontal members and variations from parallel with rake of steps and ramps for sloping members do not exceed 1/4 inch in 12 feet.
- B. Control of Corrosion: Prevent galvanic action and other forms of corrosion by insulating metals and other materials from direct contact with incompatible materials.
 - 1. Coat, with a heavy coat of bituminous paint, concealed surfaces of aluminum that are in contact with grout, concrete, masonry, wood, or dissimilar metals.

3.2 ANCHORING POSTS

- A. Use metal sleeves preset and anchored into concrete for installing posts. After posts are inserted into sleeves, fill annular space between post and sleeve with nonshrink, nonmetallic grout, mixed and placed to comply with anchoring material manufacturer's written instructions.
- B. Form or core-drill holes not less than 5 inches deep and 3/4 inch larger than OD of post for installing posts in concrete. Clean holes of loose material, insert posts, and fill annular space between post and concrete with nonshrink, nonmetallic grout, mixed and placed to comply with anchoring material manufacturer's written instructions.

C. Anchor posts to metal surfaces with oval flanges, angle type, or floor type as required by conditions, connected to posts and to metal supporting members.

3.3 ATTACHING RAILINGS

- A. Attach railings to wall with wall brackets, except where end flanges are used. Locate brackets as indicated or, if not indicated, at spacing required to support structural loads.
- B. Secure wall brackets and railing end flanges to building construction as follows:
 - 1. For concrete and solid masonry anchorage, use drilled-in expansion shields and hanger or lag bolts.
 - 2. For steel-framed partitions, use self-tapping screws fastened to steel framing or to concealed steel reinforcements.

3.4 ADJUSTING AND CLEANING

- A. Touchup Painting: Immediately after erection, clean field welds, bolted connections, and abraded areas of shop paint, and paint exposed areas with the same material as used for shop painting to comply with SSPC-PA 1 requirements for touching up shop-painted surfaces.
- B. Galvanized Surfaces: Clean field welds, bolted connections, and abraded areas, and repair galvanizing to comply with ASTM A 780/A 780M.

END OF SECTION 05 52 13
SECTION 06 10 00 - ROUGH CARPENTRY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Framing with dimension lumber.
 - 2. Framing with engineered wood products (including LVLs).
- B. Related Sections:

1.	Sheathing	Section 06 16 00
2.	Shop Fabricated Wood Trusses	Section 06 17 53

1.3 DEFINITIONS

- A. Dimension Lumber: Lumber of 2 inches nominal or greater but less than 5 inches nominal in least dimension.
- B. Lumber grading agencies, and the abbreviations used to reference them, include the following:
 - 1. NeLMA: Northeastern Lumber Manufacturers' Association.
 - 2. NLGA: National Lumber Grades Authority.
 - 3. SPIB: The Southern Pine Inspection Bureau.
 - 4. WCLIB: West Coast Lumber Inspection Bureau.
 - 5. WWPA: Western Wood Products Association.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of process and factory-fabricated product.
 - 1. I-Joists and LVLs: Manufacturer's literature describing materials, dimensions, allowable spans and spacings, bearing and anchor details, bridging and bracing requirements, and installation instructions; identify independent inspection agency
- B. Shop Drawing for I-joists and LVLs: Indicate sizes and spacing of joists, bracing and bridging, bearing stiffeners, holes to be cut (if any), and framed openings between joists.

1.5 INFORMATIONAL SUBMITTALS

- A. Material Certificates: For dimension lumber specified to comply with minimum allowable unit stresses. Indicate species and grade selected for each use and design values approved by the ALSC Board of Review.
- B. Evaluation Reports: For the following, from ICC-ES:
 - 1. Wood-preservative-treated wood.
 - 2. Fire-retardant-treated wood.
 - 3. Engineered wood products.
 - 4. Power-driven fasteners.
 - 5. Post-installed anchors.
 - 6. Metal framing anchors.
- C. Certificate: Certification by LVL manufacturer that products delivered are of the same design and construction as those evaluated by the independent inspection agency

1.6 QUALITY ASSURANCE

A. Manufacturer Qualifications: Company specializing in manufacturing the products specified in this section with minimum three years of documented experience

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Stack lumber flat with spacers between each bundle to provide air circulation. Provide for air circulation around stacks and under coverings.
- B. Protect products from damage due to weather and breakage.
- C. Deliver products to site in manufacturer's original packaging with manufacturer's name and product identification intact and legible.

PART 2 - PRODUCTS

2.1 WOOD PRODUCTS, GENERAL

- A. Lumber: DOC PS 20 and applicable rules of grading agencies indicated. If no grading agency is indicated, comply with the applicable rules of any rules-writing agency certified by the ALSC Board of Review. Grade lumber by an agency certified by the ALSC Board of Review to inspect and grade lumber under the rules indicated.
 - 1. Factory mark each piece of lumber with grade stamp of grading agency.

- 2. For exposed lumber indicated to receive a stained or natural finish, mark grade stamp on end or back of each piece or omit grade stamp and provide certificates of grade compliance issued by grading agency.
- 3. Where nominal sizes are indicated, provide actual sizes required by DOC PS 20 for moisture content specified. Where actual sizes are indicated, they are minimum dressed sizes for dry lumber.
- 4. Dress lumber, S4S, unless otherwise indicated.
- B. Maximum Moisture Content of Lumber: 19 percent unless otherwise indicated.
- C. Engineered Wood Products: Acceptable to authorities having jurisdiction and for which current model code research or evaluation reports exist that show compliance with building code in effect for Project.
 - 1. Allowable design stresses, as published by manufacturer, shall meet or exceed those indicated. Manufacturer's published values shall be determined from empirical data or by rational engineering analysis and demonstrated by comprehensive testing performed by a qualified independent testing agency.

2.2 WOOD-PRESERVATIVE-TREATED LUMBER

- A. Preservative Treatment by Pressure Process: AWPA U1; Use Category UC2 for interior construction not in contact with ground, Use Category UC3b for exterior construction not in contact with ground, and Use Category UC4a for items in contact with ground.
 - 1. Preservative Chemicals: Acceptable to authorities having jurisdiction and containing no arsenic or chromium. Do not use inorganic boron (SBX) for sill plates.
- B. Kiln-dry lumber after treatment to a maximum moisture content of 19 percent. Do not use material that is warped or that does not comply with requirements for untreated material.
- C. Mark lumber with treatment quality mark of an inspection agency approved by the ALSC Board of Review.
- D. Application: Treat items indicated on Drawings, and the following:
 - 1. Wood framing and furring attached directly to the interior of below-grade exterior masonry or concrete walls.
 - 2. Wood framing members that are less than 18 inchesabove the ground in crawlspaces or unexcavated areas.
 - 3. Wood floor plates that are installed over concrete slabs-on-grade.

2.3 FIRE-RETARDANT-TREATED MATERIALS

A. General: Where fire-retardant-treated materials are indicated, materials shall comply with requirements in this article, that are acceptable to authorities having jurisdiction, and with fire-test-response characteristics specified as determined by testing identical products per test method indicated by a qualified testing agency.

- B. Fire-Retardant-Treated Lumber and Plywood by Pressure Process: Products with a flame-spread index of 25 or less when tested according to ASTM E 84, and with no evidence of significant progressive combustion when the test is extended an additional 20 minutes, and with the flame front not extending more than 10.5 feet beyond the centerline of the burners at any time during the test.
 - 1. Exterior Type: Treated materials shall comply with requirements specified above for fire-retardant-treated lumber and plywood by pressure process after being subjected to accelerated weathering according to ASTM D 2898. Use for exterior locations and where indicated.
 - 2. Interior Type A: Treated materials shall have a moisture content of 28 percent or less when tested according to ASTM D 3201 at 92 percent relative humidity. Use unless otherwise indicated.
 - 3. Use interior Type A, High Temperature (HT) for enclosed roof framing, framing in attic spaces, and where indicated
- C. Kiln-dry lumber after treatment to maximum moisture content of 19 percent.
- D. Identify fire-retardant-treated wood with appropriate classification marking of qualified testing agency.
- E. Application: Treat items indicated on Drawings.

2.4 DIMENSION LUMBER FRAMING

- A. Non-Load-Bearing Interior Partitions: Stud grade.
 - 1. Species:
 - a. Southern pine or mixed southern pine; SPIB.
 - b. Spruce Pine Fir; WWPA.
- B. Exterior, Load-Bearing, and Shear Walls:
 - 1. Species:
 - a. Southern pine; SPIB. No. 1 grade.
 - b. Spruce Pine Fir; WWPA. No. 1 or No. 2 grade
- C. Joists, Rafters, Beams, Headers: No. 1 grade
 - 1. Species:
 - a. Southern pine; SPIB

2.5 ENGINEERED WOOD PRODUCTS

- A. Laminated-Veneer Lumber: Structural composite lumber made from wood veneers with grain primarily parallel to member lengths, evaluated and monitored according to ASTM D 5456 and manufactured with an exterior-type adhesive complying with ASTM D 2559.
 - 1. Extreme Fiber Stress in Bending, As indicated on Drawings
 - 2. Modulus of Elasticity: As indicated on Drawings

2.6 MISCELLANEOUS LUMBER

- A. General: Provide miscellaneous lumber indicated and lumber for support or attachment of other construction, including the following:
 - 1. Blocking.
 - 2. Nailers.
 - 3. Rooftop equipment bases and support curbs.
 - 4. Cants.
 - 5. Furring.
 - 6. Grounds.
- B. Dimension Lumber Items: Stud grade lumber of any species.
- C. Concealed Boards: 19 percent maximum moisture content and any of the following species and grades:
 - 1. Southern pine: No 3 grade; SPIB.
 - 2. Spruce Pin Fir: No. 3 grade, WWPA

2.7 PLYWOOD BACKING PANELS

A. Equipment Backing Panels: Plywood, DOC PS 1,Exposure 1, C-D Pluggedin thickness indicated or, if not indicated, not less than 1/2-inch nominal thickness.

2.8 FASTENERS

- A. General: Fasteners shall be of size and type indicated and shall comply with requirements specified in this article for material and manufacture.
 - 1. Where rough carpentry is exposed to weather, in ground contact, pressure-preservative treated, or in area of high relative humidity, provide fasteners with hot-dip zinc coating complying with ASTM A 153.
- B. Power-Driven Fasteners: Fastener systems with an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC70.

- C. Nails, Brads, and Staples: ASTM F 1667.
 - 1. Use common wire nails unless otherwise noted.
- D. Wood Screws: ASME B18.6.1.
- E. Lag Bolts: ASME B18.2.1 (ASME B18.2.3.8M).
- F. Bolts: Steel bolts complying with ASTM A 307, Grade A; with ASTM A 563 hex nuts and, where indicated, flat washers.

2.9 METAL FRAMING ANCHORS

- A. Allowable design loads, as published by manufacturer, shall meet or exceed those of basis-of-design products. Manufacturer's published values shall be determined from empirical data or by rational engineering analysis and demonstrated by comprehensive testing performed by a qualified independent testing agency. Framing anchors shall be punched for fasteners adequate to withstand same loads as framing anchors.
- B. Galvanized-Steel Sheet: Hot-dip, zinc-coated steel sheet complying with ASTM A 653/A 653M, G60coating designation.
 - 1. Use for interior locations unless otherwise indicated.
- C. Hot-Dip, Heavy-Galvanized Steel Sheet: ASTM A 653/A 653M; structural steel (SS), high-strength low-alloy steel Type A (HSLAS Type A), or high-strength low-alloy steel Type B (HSLAS Type B); G185 coating designation; and not less than 0.036 inchthick.
 - 1. Use for wood-preservative-treated lumber and where indicated.

2.10 MISCELLANEOUS MATERIALS

A. Sill-Sealer Gaskets: Closed-cell neoprene foam, 1/4 inch thick, selected from manufacturer's standard widths to suit width of sill members indicated.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Framing Standard: Comply with AF&PA's WCD 1, "Details for Conventional Wood Frame Construction," unless otherwise indicated.
- B. Framing with Engineered Wood Products: Install engineered wood products to comply with manufacturer's written instructions.

- C. Set rough carpentry to required levels and lines, with members plumb, true to line, cut, and fitted. Fit rough carpentry accurately to other construction. Locate furring, nailers, blocking, grounds, and similar supports to comply with requirements for attaching other construction.
- D. Install metal framing anchors to comply with manufacturer's written instructions. Install fasteners through each fastener hole.
- E. Do not splice structural members between supports unless otherwise indicated.
- F. Comply with AWPA M4 for applying field treatment to cut surfaces of preservative-treated lumber.
- G. Where wood-preservative-treated lumber is installed adjacent to metal decking, install continuous flexible flashing separator between wood and metal decking.
- H. Securely attach rough carpentry work to substrate by anchoring and fastening as indicated, complying with the following:
 - 1. Table 2304.9.1, "Fastening Schedule," in ICC's International Building Code (IBC).
 - 2. ICC-ES evaluation report for fastener.
- I. Select fasteners of size that will not fully penetrate members where opposite side will be exposed to view or will receive finish materials. Make tight connections between members. Install fasteners without splitting wood; do not countersink nail heads, unless otherwise indicated.

3.2 PROTECTION

- A. Protect wood that has been treated with inorganic boron (SBX) from weather. If, despite protection, inorganic boron-treated wood becomes wet, apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label.
- B. Protect rough carpentry from weather. If, despite protection, rough carpentry becomes wet, apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label.

END OF SECTION 06 10 00

SECTION 06 16 00 - SHEATHING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to the Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Wall sheathing.
 - 2. Roof sheathing.
 - 3. Parapet sheathing.
 - 4. Subflooring.

B. Related Sections:

1.	Rough Carpentry	Section 06 10 00
2.	Shop fabricated Wood Trusses	Section 06 17 53

1.3 ACTION SUBMITTALS

A. Product Data: For each type of process and factory-fabricated product. Indicate component materials and dimensions and include construction and application details.

1.4 INFORMATIONAL SUBMITTALS

- A. Evaluation Reports: For the following, from ICC-ES:
 - 1. Wood-preservative-treated plywood.
 - 2. Fire-retardant-treated plywood.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Stack plywood and other panels flat with spacers between each bundle to provide air circulation. Provide for air circulation around stacks and under coverings.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Fire-Resistance Ratings: As tested according to ASTM E 119; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Fire-Resistance Ratings: Indicated by design designations from UL's "Fire Resistance Directory" or from the listings of another qualified testing agency.

2.2 WOOD PANEL PRODUCTS

- A. Plywood.
- B. Oriented strand board.

2.3 PRESERVATIVE-TREATED PLYWOOD

- A. Preservative Treatment by Pressure Process: AWPA U1; Use Category UC2 for interior construction not in contact with ground, Use Category UC3b for exterior construction not in contact with ground, and Use Category UC4a for items in contact with ground.
- B. Mark plywood with appropriate classification marking of an inspection agency acceptable to authorities having jurisdiction.
- C. Application: Treat items indicated on Drawings and plywood in contact with masonry or concrete or used with roofing, flashing, vapor barriers, and waterproofing.

2.4 FIRE-RETARDANT-TREATED PLYWOOD

- A. General: Where fire-retardant-treated materials are indicated, use materials complying with requirements in this article that are acceptable to authorities having jurisdiction and with fire-test-response characteristics specified as determined by testing identical products per test method indicated by a qualified testing agency.
- B. Fire-Retardant-Treated Plywood by Pressure Process: Products with a flame-spread index of 25 or less when tested according to ASTM E 84, and with no evidence of significant progressive combustion when the test is extended an additional 20 minutes, and with the flame front not extending more than 10.5 feet beyond the centerline of the burners at any time during the test.
 - 1. Exterior Type: Treated materials shall comply with requirements specified above for fire-retardant-treated plywood by pressure process after being subjected to accelerated weathering according to ASTM D 2898. Use for exterior locations and where indicated.

- 2. Interior Type A: Treated materials shall have a moisture content of 28 percent or less when tested according to ASTM D 3201/D 3201M at 92 percent relative humidity. Use where exterior type is not indicated.
- 3. Design Value Adjustment Factors: Treated lumber plywood shall be tested according to ASTM D 5516 and design value adjustment factors shall be calculated according to ASTM D 6305. Span ratings after treatment shall be not less than span ratings specified. For roof sheathing and where high-temperature fire-retardant treatment is indicated, span ratings for temperatures up to 170 deg Fshall be not less than span ratings specified.
- C. Kiln-dry material after treatment to a maximum moisture content of 15 percent.
- D. Identify fire-retardant-treated plywood with appropriate classification marking of qualified testing agency.
- E. Application: Treat plywood indicated on Drawings.

2.5 WALL SHEATHING

- A. Plywood Sheathing: Either DOC PS 1 or DOC PS 2, Exposure 1 sheathing.
- B. Oriented-Strand-Board Sheathing: DOC PS 2, Exposure 1 sheathing.

2.6 ROOF SHEATHING

- A. Plywood Sheathing: Either DOC PS 1 or DOC PS 2, Exterior sheathing.
- B. Oriented-Strand-Board Sheathing: DOC PS 2, Exposure 1 sheathing.

2.7 PARAPET SHEATHING

- A. Plywood Sheathing: Either DOC PS 1 or DOC PS 2, Exposure 1 sheathing.
- B. Oriented-Strand-Board Sheathing: DOC PS 2, Exposure 1 sheathing.

2.8 SUBFLOORING AND UNDERLAYMENT

- A. Plywood Subflooring: Either DOC PS 1 or DOC PS 2, Exposure 1 single-floor panels or sheathing.
- B. Oriented-Strand-Board Subflooring: DOC PS 2, Exposure 1 single-floor panels or sheathing.

2.9 FASTENERS

A. General: Provide fasteners of size and type indicated that comply with requirements specified in this article for material and manufacture.

1. For roof, parapet and wall sheathing, provide fasteners with hot-dip zinc coating complying with ASTM A 153/A 153M.

2.10 MISCELLANEOUS MATERIALS

A. Adhesives for Field Gluing Panels to Wood Framing: Formulation complying with APA AFG-01 that is approved for use with type of construction panel indicated by manufacturers of both adhesives and panels.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Do not use materials with defects that impair quality of sheathing or pieces that are too small to use with minimum number of joints or optimum joint arrangement. Arrange joints so that pieces do not span between fewer than three support members.
- B. Cut panels at penetrations, edges, and other obstructions of work; fit tightly against abutting construction unless otherwise indicated.
- C. Securely attach to substrate by fastening as indicated, complying with the following:
 - 1. Table 2304.9.1, "Fastening Schedule," in the ICC's International Building Code.
 - 2. Table R602.3(1), "Fastener Schedule for Structural Members," and Table R602.3(2), "Alternate Attachments," in the ICC's International Residential Code for One- and Two-Family Dwellings.
 - 3. ICC-ES evaluation report for fastener.
- D. Coordinate wall, parapet and roof sheathing installation with flashing and joint-sealant installation so these materials are installed in sequence and manner that prevent exterior moisture from passing through completed assembly.
- E. Do not bridge building expansion joints; cut and space edges of panels to match spacing of structural support elements.

3.2 WOOD STRUCTURAL PANEL INSTALLATION

- A. General: Comply with applicable recommendations in APA Form No. E30, "Engineered Wood Construction Guide," for types of structural-use panels and applications indicated.
- B. Fastening Methods: Fasten panels as indicated below:
 - 1. Subflooring:
 - a. Glue and nail to wood framing.
 - b. Space panels 1/8 inch apart at edges and ends.

- 2. Wall and Roof Sheathing:
 - a.
 - Nail to wood framing. Space panels 1/8 inchpart at edges and ends. b.

END OF SECTION 06 16 00

SECTION 06 17 53 - SHOP-FABRICATED WOOD TRUSSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Wood roof trusses.
 - 2. Wood floor trusses.
 - 3. Wood girder trusses.
 - 4. Wood truss bracing.
- B. Related Sections include the following:

1.	Rough Carpentry	Section 06 10 00
2.	Sheathing	Section 06 16 00

1.3 DEFINITIONS

- A. Shop Fabricated Wood Trusses: Planar structural units consisting of metal-plate-connected members fabricated from dimensional lumber and cut and assembled before delivery to Project site.
- B. TPI: Truss Plate Institute, Inc.

1.4 ACTION SUBMITTALS

- A. Product Data: For metal-plate connectors, metal truss accessories, and fasteners.
- B. Shop Drawings: Prepared and certified by a qualified professional engineer, licensed in the state of Indiana.
 - 1. Building Code used for design.
 - 2. Show fabrication and installation details for trusses.
 - 3. Show location, pitch, span, camber, configuration, and spacing for each type of truss required.
 - 4. Show locations of all joints and support locations, including required bearing width.

- 5. Indicate sizes, stress grades, and species of lumber. Indicate number of plies if more than one.
- 6. Clearly indicate locations, sizes, and materials for permanent bracing required to prevent buckling of individual truss members due to design loads.
- 7. Indicate type, size, material, finish, design values, orientation, and location of metal connector plates.
- 8. Adjustments to wood member and metal plate design values based on conditions of use.
- 9. Maximum reaction force and direction, including maximum uplift reaction forces where applicable.
- 10. Truss-to-truss connections and truss field assembly requirements.
- 11. For installed products indicated to comply with design loads, include structural analysis data signed and sealed by the qualified professional engineer responsible for their preparation. Design must meet the minimum requirements of the locally adopted building code or the design loading listed on the Contract Drawings, whichever is more stringent.
- 12. Indicate calculated span to deflection ratio and/or maximum vertical and horizontal deflection for live and total load and KCR as applicable.
- C. Delegated-Design Submittal: For metal-plate-connected wood trusses indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.5 INFORMATIONAL SUBMITTALS

- A. Product Certificates: For metal-plate-connected wood trusses, signed by officer of truss-fabricating firm.
- B. Evaluation Reports: For the following, from ICC-ES:
 - 1. Metal-plate connectors.
 - 2. Metal truss accessories.
- C. Qualification Data: For metal-plate manufacturer, professional engineer, fabricator, and installer.

1.6 QUALITY ASSURANCE

- A. Metal Connector-Plate Manufacturer Qualifications: A manufacturer that is a member of TPI and that complies with quality-control procedures in TPI 1 for manufacture of connector plates.
 - 1. Manufacturer's responsibilities include providing professional engineering services needed to assume engineering responsibility.
 - 2. Engineering Responsibility: Preparation of Shop Drawings and comprehensive engineering analysis by a qualified professional engineer.

- B. Fabricator Qualifications: Shop that participates in a recognized quality-assurance program, complies with quality-control procedures in TPI 1, and involves third-party inspection by an independent testing and inspecting agency acceptable to Engineer and authorities having jurisdiction.
- C. Source Limitations for Connector Plates: Obtain metal connector plates from a single manufacturer.
- D. Comply with applicable requirements and recommendations of the following publications:
 - 1. TPI 1, "National Design Standard for Metal Plate Connected Wood Truss Construction."
 - 2. TPI DSB, "Recommended Design Specification for Temporary Bracing of Metal Plate Connected Wood Trusses."
 - 3. BCSI, "Guide to Good Practice for Handling, Installing, Restraining, & Bracing Metal Plate Connected Wood Trusses."

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Handle and store trusses to comply with recommendations in SBCA BCSI, "Building Component Safety Information: Guide to Good Practice for Handling, Installing, Restraining, & Bracing Metal Plate Connected Wood Trusses."
 - 1. Store trusses flat, off of ground, and adequately supported to prevent lateral bending.
 - 2. Protect trusses from weather by covering with waterproof sheeting, securely anchored.
 - 3. Provide for air circulation around stacks and under coverings.
- B. Inspect trusses showing discoloration, corrosion, or other evidence of deterioration. Discard and replace trusses that are damaged or defective.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 01 40 00 "Quality Requirements," to design metal-plate-connected wood trusses.
- B. Structural Performance: Metal-plate-connected wood trusses shall be capable of withstanding design loads within limits and under conditions indicated. Comply with requirements in TPI 1.
- C. Comply with applicable requirements and recommendations of TPI1, TPIDSB, and SBCA BCSI.
- D. Wood Structural Design Standard: Comply with applicable requirements in AF&PA's "National Design Specifications for Wood Construction" and its "Supplement."

2.2 DIMENSION LUMBER

- A. Lumber: DOC PS 20 and applicable rules of any rules-writing agency certified by the American Lumber Standard Committee (ALSC) Board of Review. Provide lumber graded by an agency certified by the ALSC Board of Review to inspect and grade lumber under the rules indicated.
 - 1. Factory mark each piece of lumber with grade stamp of grading agency.
 - 2. Provide dressed lumber, S4S.
 - 3. Provide dry lumber with 19 percent maximum moisture content at time of dressing.
- B. Grade and Species: For truss chord and web members, provide dimension lumber of any species (unless noted otherwise on Drawings), graded visually or mechanically, and capable of supporting required loads without exceeding allowable design values according to AF&PA's "National Design Specifications for Wood Construction" and its "Supplement."
- C. Minimum Chord Size for Trusses: See Drawings for any specific chord size requirements.
- D. Permanent Bracing: Provide wood bracing that complies with requirements for miscellaneous lumber in Section 06 10 00 "Rough Carpentry."

2.3 METAL CONNECTOR PLATES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Alpine Engineered Products, Inc.
 - 2. Cherokee Metal Products, Inc.; Masengill Machinery Company.
 - 3. CompuTrus, Inc.
 - 4. Eagle Metal Products.
 - 5. Jager Building Systems, Inc.
 - 6. MiTek Industries, Inc.
 - 7. Robbins Engineering, Inc.
 - 8. Truswal Systems Corporation.
- B. General: Fabricate connector plates to comply with TPI 1.
- C. Hot-Dip Galvanized-Steel Sheet: ASTM A 653; Structural Steel (SS), high-strength low-alloy steel Type A (HSLAS Type A), or high-strength low-alloy steel Type B (HSLAS Type B); G60 coating designation; and not less than 0.036 inch thick.

2.4 FASTENERS

A. General: Provide fasteners of size and type indicated that comply with requirements specified in this article for material and manufacture.

- 1. Provide fasteners for use with metal framing anchors that comply with written recommendations of metal framing manufacturer.
- 2. Where trusses are exposed to weather, in ground contact, or in area of high relative humidity, provide fasteners with hot-dip zinc coating complying with ASTM A 153.
- B. Nails, Brads, and Staples: ASTM F 1667.
- C. Power-Driven Fasteners: Fastener systems with an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC70.

2.5 METAL FRAMING ANCHORS AND ACCESSORIES

- A. Allowable design loads, as published by manufacturer, shall comply with or exceed those of basis-of-design products. Manufacturer's published values shall be determined from empirical data or by rational engineering analysis and demonstrated by comprehensive testing performed by a qualified independent testing agency. Framing anchors shall be punched for fasteners adequate to withstand same loads as framing anchors.
- B. Galvanized-Steel Sheet: Hot-dip, zinc-coated steel sheet complying with ASTM A 653, G60 coating designation.

2.6 FABRICATION

- A. Assemble truss members in design configuration indicated; use jigs or other means to ensure uniformity and accuracy of assembly, with joints closely fitted to comply with tolerances in TPI 1. Position members to produce design camber indicated.
 - 1. Fabricate wood trusses within manufacturing tolerances in TPI 1.
- B. Connect truss members by metal connector plates located and securely embedded simultaneously in both sides of wood members by air or hydraulic press.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install wood trusses only after supporting construction is in place and is braced and secured.
- B. If trusses are delivered to Project site in more than one piece, assemble trusses before installing.
- C. Hoist trusses in place by lifting equipment suited to sizes and types of trusses required, exercising care not to damage truss members or joints by out-of-plane bending or other causes.
- D. Install and brace trusses according to TPI recommendations and as indicated.

- E. Anchor trusses securely at bearing points; use metal truss tie-downs or floor truss hangers as applicable. Install fasteners through each fastener hole in metal framing anchors according to manufacturer's fastening schedules and written instructions.
- F. Securely connect each truss ply required for forming built-up girder trusses.
- G. Install and fasten permanent bracing during truss erection and before construction loads are applied. Anchor ends of permanent bracing where terminating at walls or beams.
 - 1. Install bracing to comply with Section 06 10 00 "Rough Carpentry."
 - 2. Install and fasten strongback bracing vertically against vertical web of parallel-chord floor trusses at centers indicated.
- H. Install wood trusses within installation tolerances in TPI 1.
- I. Do not alter trusses in field. Do not cut, drill, notch, or remove truss members.
- J. Replace wood trusses that are damaged or do not comply with requirements.

END OF SECTION 06 17 53

SECTION 06 20 13 - EXTERIOR FINISH CARPENTRY

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Lumber soffits.
- B. Related Requirements:
 - 1. Section 099300 "Staining and Transparent Finishing" for shop finishing of ceiling boards.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of process and factory-fabricated product.
- B. Samples: For each type of product involving selection of colors, profiles, or textures.

1.3 INFORMATIONAL SUBMITTALS

- A. Compliance Certificates:
 - 1. For lumber that is not marked with grade stamp.
 - 2. For preservative-treated wood that is not marked with treatment-quality mark.

1.4 QUALITY ASSURANCE

A. Vendor Qualifications: A vendor that is certified for chain of custody by an FSC-accredited certification body.

PART 2 - PRODUCTS

2.1 MATERIALS, GENERAL

"Certified Wood" Paragraph below applies t Manufacturers certifying products as "FSC Mixed Credit" do not have to use 100 percent certified wood in the products; howeheir total production, manufacturers must use an amount equal to or greater than the percentage of their production that is labeled "FSC Mixed Credit."

A. Lumber: DOC PS 20 and applicable rules of grading agencies indicated.

- B. Factory mark each piece of lumber with grade stamp of inspection agency, indicating grade, species, moisture content at time of surfacing, and mill.
 - 1. For exposed lumber, mark grade stamp on end or back of each piece, or omit grade stamp and provide certificates of grade compliance issued by inspection agency.
- C. Softwood Plywood: DOC PS 1.
- D. Hardboard: ANSI A135.4.

2.2 LUMBER SOFFITS

- A. Provide kiln-dried lumber siding complying with DOC PS20.
- B. Species and Grade: Clear A Clear western red cedar; NLGA, WCLIB, or WWPA.
- C. Pattern: V-edge, smooth-faced tongue and groove, actual face width (coverage) and thickness of 5-1/8 by 23/32 inch .

2.3 MISCELLANEOUS MATERIALS

- A. Insect Screening for Soffit Vents: PVC-coated glass-fiber fabric, 18-by-14-inch or 18-by-16-inch mesh.
- B. Continuous Soffit Vents: Aluminum extrusion Basis-of-Design Fry Reglet DS-75-V-300 with , 3 inches wide and in lengths not less than 96 inches and as specified on drawings
 - 1. Finish: Black.
- C. Sealants: Latex, complying with ASTM C834 Type OP, Grade NF and applicable requirements in Section 07 92 00 "Joint Sealants" and recommended by sealant and substrate manufacturers for intended application.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Bostik, Inc; Chem-Calk 600.
 - b. Tremco, Inc.; Tremflex 834.

PART 3 - EXECUTION

- 3.1 INSTALLATION, GENERAL
 - A. Install exterior finish carpentry level, plumb, true, and aligned with adjacent materials. Use concealed shims where necessary for alignment.

1. Scribe and cut exterior finish carpentry to fit adjoining work. Refinish and seal cuts as recommended by manufacturer.

END OF SECTION 06 20 13

SECTION 06 40 13 - EXTERIOR ARCHITECTURAL WOODWORK

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Exterior existing standing and running trim that requires replacement.
 - 2. Exterior existing frames and jambs that require replacement.
 - 3. Wood furring, blocking, shims, and hanging strips for installing exterior architectural woodwork items that are not concealed within other construction that require replacement.
 - 4. Shop priming of exterior architectural woodwork.
 - 5. Shop finishing of exterior architectural woodwork.
 - 6. Delegated-Design wood sun screening elements at "The Porch".

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Wood-Preservative Treatment:
 - a. Include data and warranty information from chemical-treatment manufacturer and certification by treating plant that treated materials comply with requirements.
 - b. Indicate type of preservative used and net amount of preservative retained.
 - c. Include chemical-treatment manufacturer's written instructions for finishing treated material and manufacturer's written warranty.
 - 2. Waterborne Treatments: For products receiving a waterborne treatment, include statement that moisture content of treated materials was reduced to levels specified before shipment to Project site.
- B. Shop Drawings:
 - 1. Include dimensioned plans, elevations, sections, and attachment details.
 - 2. Show large-scale details.
 - 3. Show locations and sizes of furring, blocking, and hanging strips, including blocking and reinforcement concealed by construction and specified in other Sections.

1.3 QUALITY ASSURANCE

A. Mockups: Build mockups to verify it conforms to Owner's standards and expectations of historic rehabilitation. Mockups will demonstrate aesthetic effects, and to set quality standards for materials and execution. Owner may approve acceptable mockups to be incorporated into work.

PART 2 - PRODUCTS

2.1 EXTERIOR STANDING AND RUNNING TRIM FOR OPAQUE FINISH

- A. Architectural Woodwork Standards Grade: Custom.
- B. Backout or groove backs of flat trim members, and kerf backs of other wide, flat members, except for members with ends exposed in finished work.
- C. Wood Species: Western red cedar, Ponderosa pine or sugar pine, Eastern white pine, sugar pine, or western white pine, orany Owner-approved closed-grain hardwood.
 - 1. Do not use plain-sawn softwood lumber with exposed, flat surfaces more than 3 inches wide.
 - 2. Wood Moisture Content: 7 to 12 percent.

2.2 EXTERIOR FRAMES AND JAMBS FOR OPAQUE FINISH

- A. Architectural Woodwork Standards Grade: Custom.
- B. Wood Species: Ponderosa pine or sugar pine, Eastern white pine, sugar pine, or western white pine, or Any closed-grain hardwood.
 - 1. Do not use plain-sawn softwood lumber with exposed, flat surfaces more than 3 inches wide.
 - 2. Wood Moisture Content: 9 to 15 percent.

2.3 WOOD MATERIALS

- A. Hardboard: ANSI A135.4.
- B. Softwood Plywood: DOC PS 1, exterior, medium-density overlay.

2.4 PRESERVATIVE-TREATED-WOOD MATERIALS

- A. Preservative-Treated-Wood Materials: Provide with water-repellent preservative treatment complying with AWPA N1 (dip, spray, flood, or vacuum-pressure treatment).
 - 1. Preservative Chemicals: 3-iodo-2-propynyl butyl carbamate (IPBC), combined with a compatible EPA-registered insecticide.
 - 2. Use chemical formulations that do not bleed through or otherwise adversely affect finishes. Do not use colorants in solution to distinguish treated material from untreated material.
- B. Extent of Preservative-Treated Wood Materials: Treat wood materials .
 - 1. Items fabricated from the following wood species need not be treated:
 - a. Redwood.Western red cedar.
 - b. White oak.
 - c. Ipe.

2.5 FASTENERS

- A. General: Provide fasteners of size and type indicated, acceptable to authorities having jurisdiction, and that comply with requirements specified in this article for material and manufacture. Provide nails or screws, in sufficient length, to penetrate not less than 1-1/2 inches into wood substrate.
 - 1. Use fasteners with hot-dip zinc coating complying with ASTM A 153/A 153M or ASTM F 2329/F 2329M unless otherwise indicated.
 - 2. For pressure-preservative-treated wood, use stainless steel fasteners.
 - 3. For redwood, use hot-dip galvanized-steel fasteners.
- B. Nails: ASTM F 1667.
- C. Power-Driven Fasteners: ICC-ES AC70.
- D. Wood Screws and Lag Screws: ASME B18.2.1, ASME B18.6.1, or ICC-ES AC233.
- E. Carbon-Steel Bolts: ASTM A 307 with ASTM A 563 hex nuts and, where indicated, flat washers all hot-dip zinc coated.
- F. Stainless Steel Bolts: ASTM F 593, Alloy Group 1 or 2; with ASTM F 594, Alloy Group 1 or 2 hex nuts and, where indicated, flat washers.
- G. Postinstalled Anchors: Stainless steel, chemical or torque-controlled expansion anchors with capability to sustain, without failure, a load equal to 6 times the load imposed when installed in unit masonry assemblies and equal to 4 times the load imposed when installed in concrete as determined by testing according to ASTM E 488/E 488M conducted by a qualified independent testing and inspecting agency.

1. Stainless steel bolts and nuts complying with ASTM F 593 and ASTM F 594, Alloy Group 1 or 2.

2.6 MISCELLANEOUS MATERIALS

- A. Blocking, Shims, and Nailers: Softwood or hardwood lumber, kiln-dried to less than 15 percent moisture content.
 - 1. Wood-Preservative Treatment: By pressure process, AWPA U1; Use Category UC3b.
 - a. Kiln-dry lumber after treatment to a maximum moisture content of 19 percent.
 - b. Preservative Chemicals: Acceptable to authorities having jurisdiction and containing no arsenic or chromium.
 - c. Mark lumber with treatment quality mark of an inspection agency approved by the American Lumber Standards Committee's (ALSC) Board of Review.
- B. Adhesives: Do not use adhesives that contain urea formaldehyde.

2.7 FABRICATION

- A. Fabricate exterior architectural woodwork to dimensions, profiles, and details indicated.
 - 1. Ease edges to radius indicated for the following:
 - a. Edges of Solid-Wood (Lumber) Members: 1/16 inch unless otherwise indicated.
 - b. Edges of Rails and Similar Members More Than 3/4 Inch Thick: 1/8 inch.
- B. Complete fabrication, including assembly, to maximum extent possible before shipment to Project site.
 - 1. Disassemble components only as necessary for shipment and installation.
 - 2. Where necessary for fitting at site, provide allowance for scribing, trimming, and fitting.
 - 3. Trial fit assemblies at fabrication shop that cannot be shipped completely assembled.
 - a. Install dowels, screws, bolted connectors, and other fastening devices that can be removed after trial fitting.
 - b. Verify that parts fit as intended, and check measurements of assemblies against field measurements indicated on approved Shop Drawings before disassembling for shipment.

2.8 SHOP PRIMING

A. Preparations for Finishing: Comply with the Architectural Woodwork Standards for sanding, filling countersunk fasteners, sealing concealed surfaces, and similar preparations for finishing exterior architectural woodwork, as applicable to each unit of work.

- B. Backpriming: Apply one coat of sealer or primer, compatible with finish coats, to concealed surfaces of woodwork. Apply two coats to surfaces installed in contact with concrete or masonry and to end-grain surfaces.
- C. Exterior Architectural Woodwork for Opaque Finish: Shop prime all surfaces with one coat of wood primer as specified in Section 09 91 13 "Exterior Painting."

2.9 SHOP FINISHING

- A. Finish exterior architectural woodwork indicated on Drawings at fabrication shop. Defer only final touchup, cleaning, and polishing until after installation.
- B. Preparation for Finishing: Comply with the Architectural Woodwork Standards for sanding, filling countersunk fasteners, sealing concealed surfaces, and similar preparations for finishing exterior architectural woodwork, as applicable to each unit of work.
 - 1. Backpriming: Apply one coat of sealer or primer, compatible with finish coats, to concealed surfaces of exterior architectural woodwork. Apply two coats to end-grain surfaces.
- C. Opaque Finish: Comply with Section 09 91 13 "Exterior Painting."

PART 3 - EXECUTION

3.1 PREPARATION

- A. Before installation, condition exterior architectural woodwork to average prevailing humidity conditions at Project site.
- B. Before installing exterior architectural woodwork, examine shop-fabricated work for completion, and complete work as required, including removing packing and backpriming concealed surfaces.

3.2 INSTALLATION

- A. Grade: Install exterior architectural woodwork to comply with same grade as item to be installed.
- B. Assemble exterior architectural woodwork, and complete fabrication at Project site to the extent that it was not completed during shop fabrication.
- C. Install exterior architectural woodwork level, plumb, true in line, and without distortion.
 - 1. Shim as required with concealed shims.
 - 2. Install level and plumb to a tolerance of 1/8 inch in 96 inches.

- D. Standing and Running Trim:
 - 1. Install with minimum number of joints possible, using full-length pieces (from maximum length of lumber available) to greatest extent possible.
 - 2. Do not use pieces less than 60 inches long, except where shorter single-length pieces are necessary.
 - 3. Scarf running joints and stagger in adjacent and related members.
- E. Scribe and cut exterior architectural woodwork to fit adjoining work, refinish cut surfaces, and repair damaged finish at cuts.
- F. Preservative-Treated Wood Materials: Where field cut or drilled, treat cut ends and drilled holes according to AWPA M4.
- G. Anchor exterior architectural woodwork to anchors or blocking built in or directly attached to substrates.
 - 1. Secure with countersunk, concealed fasteners and blind nailing.
 - 2. Use fine finishing nails or finishing screws for exposed fastening, countersunk and filled flush with exterior architectural woodwork.
 - 3. For exposed work, arrange fasteners in straight rows parallel with edges of members, with fasteners evenly spaced and with adjacent rows staggered.
 - 4. For shop-finished items, use filler matching finish of items being installed.
- H. Touch up finishing work specified in this Section after installation of exterior architectural woodwork.
 - 1. Fill nail holes with matching filler where exposed.
 - 2. Apply specified finish coats, including stains and paste fillers if any, to exposed surfaces where only sealer/prime coats are shop applied.
- I. Field Finishing: See Section 09 91 13 "Exterior Painting" for final finishing of installed exterior architectural woodwork.

END OF SECTION 06 40 13

SECTION 06 40 23 - INTERIOR ARCHITECTURAL WOODWORK

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Interior standing and running trim.
 - 2. Interior frames and jambs.
 - 3. Interior stairs and railings.
 - 4. Wood furring, blocking, shims, and hanging strips for installing interior architectural woodwork items that are not concealed within other construction.
 - 5. Shop priming of interior architectural woodwork.
 - 6. Shop finishing of interior architectural woodwork.

1.2 ACTION SUBMITTALS

- A. Product Data: For the following:
 - 1. Anchors.
 - 2. Adhesives.
 - 3. Shop finishing materials.
- B. Shop Drawings:
 - 1. Include the following:
 - a. Dimensioned plans, elevations, and sections.
 - b. Attachment details.
 - 2. Show large-scale details.
 - 3. Show locations and sizes of furring, blocking, and hanging strips, including blocking and reinforcement concealed by construction and specified in other Sections.
- C. Samples: For each exposed product and for each shop-applied color and finish specified.

1.3 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For architectural woodwork manufacturer Installer.
- B. Product Certificates: For the following:
 - 1. Composite wood products.
 - 2. Adhesives.

C. Field quality-control reports.

1.4 FIELD CONDITIONS

- A. Environmental Limitations without Humidity Control: Do not deliver or install interior architectural woodwork until building is enclosed, wet-work is complete, and HVAC system is operating and maintaining temperature and relative humidity at levels designed for building occupants for the remainder of the construction period.
- B. Environmental Limitations with Humidity Control: Do not deliver or install interior architectural woodwork until building is enclosed, wet-work is complete, and HVAC system is operating and maintaining temperature between 60 and 90 deg F and relative humidity between 20 and 50 percent during the remainder of the construction period.

PART 2 - PRODUCTS

2.1 INTERIOR STANDING AND RUNNING TRIM FOR TRANSPARENT FINISH

- A. Architectural Woodwork Standards Grade: Custom.
- B. Hardwood Lumber:
 - 1. Location: Historic wood floor patching or replacement. New building wood floor finishes.
 - 2. Wood Species and Cut: Match species and cut indicated for other types of transparent-finished architectural woodwork located in same area of building unless otherwise indicated.
 - 3. Species: Red oak or White oak.
 - 4. Cut: Plain sliced/plain sawn.
 - 5. Wood Moisture Content: 5 to 10 percent.
 - 6. Provide split species on trim that faces areas with different wood species, matching each face of woodwork to species and cut of finish wood surfaces in areas finished.
 - 7. For trim items wider than available lumber, use veneered construction. Do not glue for width.
 - 8. For base wider than available lumber, glue for width. Do not use veneered construction.
 - 9. For rails thicker than available lumber, use veneered construction. Do not glue for thickness.
- C. Softwood Lumber:
 - 1. Location: New trim and base in renovated and new construction.
 - 2. Wood Species and Cut: Match species and cut indicated for other types of transparent-finished architectural woodwork located in same area of building unless otherwise indicated.
 - 3. Species: Western white pine or Douglas fir.

- 4. Cut: Plain sawn.
- 5. Wood Moisture Content: 5 to 10 percent.
- 6. Provide split species on trim that faces areas with different wood species, matching each face of woodwork to species and cut of finish wood surfaces in areas finished.
- 7. For trim items wider than available lumber, use veneered construction. Do not glue for width.
- 8. For base wider than available lumber, glue for width. Do not use veneered construction.
- 9. For rails thicker than available lumber, use veneered construction. Do not glue for thickness.
- 10. Do not use plain-sawn softwood lumber with exposed, flat surfaces more than 3 inches wide.

2.2 INTERIOR STANDING AND RUNNING TRIM FOR OPAQUE FINISH

- A. Architectural Woodwork Standards Grade: Custom.
 - 1. Location: Renovated and new construction.
 - 2. Wood Species: Eastern white pine, sugar pine, or western white pine.
 - 3. Wood Moisture Content: 5 to 10 percent.

2.3 INTERIOR FRAMES AND JAMBS FOR OPAQUE FINISH

- A. Architectural Woodwork Standards Grade: Custom.
- B. Wood Species: Eastern white pine, sugar pine, or western white pine.
 - 1. Location: Renovated and new construction.
 - 2. Do not use plain-sawn softwood lumber with exposed, flat surfaces more than 3 inches wide.
 - 3. Wood Moisture Content: 5 to 10 percent.

2.4 INTERIOR RAILINGS

- A. Architectural Woodwork Standards Grade: Custom.
- B. Wood for Transparent Finish:
 - 1. Species and cut:
 - a. Railings: Red oak, plain sawn orHard maple, plain sawn (match flooring).
- C. Wood for Opaque Finish:
 - 1. Species: Eastern white pine, sugar pine, or western white pine.
 - 2. Wood Moisture Content: 5 to 10 percent.

- D. Handrail Brackets: Cast bronze with wall flange drilled and tapped for concealed hanger bolt and with support arm for screwing to underside of rail. Size to provide 1-1/2-inch clearance between handrail and face of wall.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Blum, Julius & Co., Inc.
 - b. The Wagner Companies.
 - c. .
- E. Handrail/Bumper Rail Brackets: Pairs of extruded-aluminum channels: one for fastening to back of rail and one for fastening to face of wall, assembled in overlapping fashion and fastened together at top and bottom with self-tapping screws. Size to provide 1-1/2-inch clearance between handrail and wall.

2.5 MISCELLANEOUS MATERIALS

- A. Furring, Blocking, Shims, and Nailers: Softwood or hardwood lumber, kiln-dried to less than 15 percent moisture content.
 - 1. Preservative Treatment: Provide softwood lumber treated by pressure process, AWPA U1; Use Category UC3b.
 - a. Provide where in contact with concrete or masonry.
 - b. Kiln-dry lumber after treatment to a maximum moisture content of 19 percent.
 - c. Preservative Chemicals: Acceptable to authorities having jurisdiction and containing no arsenic or chromium.
 - d. Mark lumber with treatment quality mark of an inspection agency approved by the American Lumber Standards Committee's (ALSC) Board of Review.
- B. Provide self-drilling screws for metal-framing supports, as recommended by metal-framing manufacturer.
- C. Anchors: Select material, type, size, and finish required for each substrate for secure anchorage.
 - 1. Provide metal expansion sleeves or expansion bolts for post-installed anchors.
 - 2. Use nonferrous-metal or hot-dip galvanized anchors and inserts at inside face of exterior walls and at floors.
- D. Adhesives: Do not use adhesives that contain urea formaldehyde.
- E. Installation Adhesive: Product recommended by fabricator for each substrate for secure anchorage.

2.6 FABRICATION

- A. Sand fire-retardant-treated wood lightly to remove raised grain on exposed surfaces before fabrication.
- B. Fabricate interior architectural woodwork to dimensions, profiles, and details indicated.
 - 1. Ease edges to radius indicated for the following:
 - a. Edges of Solid-Wood (Lumber) Members: 1/16 inch unless otherwise indicated.
 - b. Edges of Rails and Similar Members More Than 3/4 Inch Thick: 1/8 inch.
- C. Complete fabrication, including assembly, to maximum extent possible before shipment to Project site.
 - 1. Disassemble components only as necessary for shipment and installation.
 - 2. Where necessary for fitting at site, provide allowance for scribing, trimming, and fitting.
 - 3. Trial fit assemblies at fabrication shop that cannot be shipped completely assembled.
 - a. Install dowels, screws, bolted connectors, and other fastening devices that can be removed after trial fitting.
 - b. Verify that parts fit as intended, and check measurements of assemblies against field measurements indicated on approved Shop Drawings before disassembling for shipment.
- D. Stairs: Cut rough carriages to accurately fit treads and risers.
 - 1. Glue treads to risers, and glue and nail treads and risers to carriages.
 - 2. House wall and face stringers, and glue and wedge treads and risers.
 - 3. Fabricate stairs with treads and risers no more than 1/8 inch from indicated position and no more than 1/16 inch out of relative position for adjacent treads and risers.

2.7 SHOP PRIMING

- A. Preparations for Finishing: Comply with the Architectural Woodwork Standards for sanding, filling countersunk fasteners, sealing concealed surfaces, and similar preparations for finishing interior architectural woodwork, as applicable to each unit of work.
- B. Interior Architectural Woodwork for Opaque Finish: Shop prime with one coat of wood primer as specified in Section 09 91 23 "Interior Painting."
 - 1. Backpriming: Apply one coat of primer, compatible with finish coats, to concealed surfaces of woodwork. Apply two coats to surfaces installed in contact with concrete or masonry and to end-grain surfaces.

- C. Interior Architectural Woodwork for Transparent Finish: Shop-seal concealed surfaces with required pretreatments and first coat of finish as specified in Section 09 93 00 "Staining and Transparent Finishing."
 - 1. Backpriming: Apply one coat of sealer, compatible with finish coats, to concealed surfaces of woodwork. Apply two coats to surfaces installed in contact with concrete or masonry and to end-grain surfaces.

2.8 SHOP FINISHING

- A. Finish interior architectural woodwork with transparent finish at fabrication shop. Defer only final touchup, cleaning, and polishing until after installation.
- B. Preparation for Finishing: Comply with Architectural Woodwork Standards, Section 5 for sanding, filling countersunk fasteners, sealing concealed surfaces, and similar preparations for finishing interior architectural woodwork, as applicable to each unit of work.
 - 1. Backpriming: Apply one coat of sealer or primer, compatible with finish coats, to concealed surfaces of interior architectural woodwork. Apply two coats to end-grain surfaces.
- C. Transparent Finish:
 - 1. Architectural Woodwork Standards Grade: Same as item to be finished.
 - 2. Finish System 11: Polyurethane, Catalyzed.
 - 3. Finish System 12: Polyurethane, Water Based.
 - 4. Wash Coat for Closed-Grain Woods: Apply wash-coat sealer to woodwork made from closed-grain wood before staining and finishing.
 - 5. Staining: Match approved sample for color.
 - 6. Open Finish for Open-Grain Woods: Do not apply filler to open-grain woods.
 - 7. Sheen: As indicated on drawings.
- D. Opaque Finish:
 - 1. Architectural Woodworking Standards Grade: Same as item to be finished.
 - 2. Finish System 4: Latex Acrylic, Water Based.
 - 3. Color: As selected by Architect from manufacturer's full range.
 - 4. Sheen: As indicated on drawings.

PART 3 - EXECUTION

3.1 PREPARATION

A. Before installation, condition interior architectural woodwork to humidity conditions in installation areas for not less than 72 hours prior to beginning of installation.

B. Before installing interior architectural woodwork, examine shop-fabricated work for completion and complete work as required, including removal of packing and backpriming of concealed surfaces.

3.2 INSTALLATION

- A. Grade: Install interior architectural woodwork to comply with same grade as item to be installed.
- B. Assemble interior architectural woodwork and complete fabrication at Project site to the extent that it was not completed during shop fabrication.
- C. Install interior architectural woodwork level, plumb, true in line, and without distortion.
 - 1. Shim as required with concealed shims.
 - 2. Install level and plumb to a tolerance of 1/8 inch in 96 inches.
- D. Scribe and cut interior architectural woodwork to fit adjoining work, refinish cut surfaces, and repair damaged finish at cuts.
- E. Preservative-Treated Wood: Where cut or drilled in field, treat cut ends and drilled holes in accordance with AWPA M4.
- F. Fire-Retardant-Treated Wood: Install fire-retardant-treated wood to comply with chemical treatment manufacturer's written instructions, including those for adhesives used to install woodwork.
- G. Anchor interior architectural woodwork to anchors or blocking built in or directly attached to substrates.
 - 1. Secure with countersunk, concealed fasteners and blind nailing.
 - 2. Use fine finishing nails or finishing screws for exposed fastening, countersunk and filled flush with interior architectural woodwork.
 - 3. For shop-finished items, use filler matching finish of items being installed.
- H. Standing and Running Trim:
 - 1. Install with minimum number of joints possible, using full-length pieces (from maximum length of lumber available) to greatest extent possible.
 - 2. Do not use pieces less than 60 inches long, except where shorter single-length pieces are necessary.
 - 3. Scarf running joints and stagger in adjacent and related members.
 - 4. Fill gaps, if any, between top of base and wall with latex sealant, painted to match wall.
 - 5. Install standing and running trim with no more variation from a straight line than 1/8 inch in 96 inches.
- I. Stairs: Securely anchor carriages to supporting substrates.

- 1. Install stairs with treads and risers no more than 1/8 inch from indicated position.
- 2. Secure with countersunk, concealed fasteners and blind nailing.
- 3. Use fine finishing nails or finishing screws for exposed fastening, countersunk and filled flush with wood surface.
- J. Railings:
 - 1. Install rails with no more than 1/8 inch in 96-inch variation from a straight line.
 - 2. Stair Rails: Glue and dowel or pin balusters to treads and railings, and railings to newel posts.
 - a. Secure with countersunk, concealed fasteners and blind nailing.
 - 3. Wall Rails: Support rails on wall brackets securely fastened to wall framing.

END OF SECTION 06 40 23

SECTION 07 21 00 - THERMAL INSULATION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Extruded polystyrene foam-plastic board insulation (Exterior Wall Insulation Board and Foundation Drainage Board).
 - 2. Polyisocyanurate foam-plastic board insulation (Roof Insulation Board).
 - 3. Glass-fiber blanket insulation.
 - 4. Mineral-wool board insulation (Curtainwall Insulation Boards).

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 EXTRUDED POLYSTYRENE FOAM-PLASTIC BOARD INSULATION

- A. Extruded Polystyrene Board Insulation, Type IV : ASTM C578, Type IV, 25-psi minimum compressive strength; unfaced.
 - 1. Manufacturers: Subject to compliance with requirements, [provide products by the following] [provide products by one of the following] [available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following]:
 - a. DiversiFoam Products.
 - b. Dow Chemical Company (The).
 - c. Kingspan Insulation Limited.
 - d. Owens Corning.
 - e.

.

- 2. Flame-Spread Index: Not more than 25 when tested in accordance with ASTM E84.
- 3. Smoke-Developed Index: Not more than 450 when tested in accordance with ASTM E84.
- 4. Fire Propagation Characteristics: Passes NFPA 285 testing as part of an approved assembly.
- 5. Labeling: Provide identification of mark indicating R-value of each piece of insulation 12 inches and wider in width.
- B. Extruded Polystyrene Board Insulation, Type VI : ASTM C578, Type VI, 40-psi minimum compressive strength
- 1. Manufacturers: Subject to compliance with requirements, [provide products by the following] [provide products by one of the following] [available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following]:
 - a. DiversiFoam Products.
 - b. Dow Chemical Company (The).
 - c. Kingspan Insulation Limited.
 - d. Owens Corning.
- 2. Flame-Spread Index: Not more than 25 when tested in accordance with ASTM E84.
- 3. Smoke-Developed Index: Not more than 450 when tested in accordance with ASTM E84.
- 4. Labeling: Provide identification of mark indicating R-value of each piece of insulation 12 inches and wider in width.

2.2 POLYISOCYANURATE FOAM-PLASTIC BOARD INSULATION

- A. Polyisocyanurate Board Insulation, Foil Faced : ASTM C1289, foil faced, Type I, Class 1 or 2.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Atlas Molded Products; a Division of Atlas Roofing Corporation.
 - b. Atlas Roofing Corporation.
 - c. Carlisle Coatings & Waterproofing Inc.
 - d. Dow Chemical Company (The).
 - e. Firestone Building Products.
 - f. Hunter Panels.
 - g. Johns Manville; a Berkshire Hathaway company.
 - h. Rmax, Inc.
 - i.
 - 2. Fire Propagation Characteristics: Passes NFPA 285 testing as part of an approved assembly.
 - 3. Labeling: Provide identification of mark indicating R-value of each piece of insulation 12 inches and wider in width.

2.3 GLASS-FIBER BLANKET INSULATION

- A. Glass-Fiber Blanket Insulation, Unfaced : ASTM C665, Type I; passing ASTM E136 for combustion characteristics.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

- a. CertainTeed Corporation.
- b. CertainTeed Insulation.
- c. Johns Manville; a Berkshire Hathaway company.
- d. Knauf Insulation.
- e. Owens Corning.
- f. Insert manufacturer's name.
- 2. Flame-Spread Index: Not more than 25 when tested in accordance with ASTM E84.
- 3. Smoke-Developed Index: Not more than 50 when tested in accordance with ASTM E84.
- 4. Labeling: Provide identification of mark indicating R-value of each piece of insulation 12 inches and wider in width.
- B. Glass-Fiber Blanket Insulation, Kraft Faced : ASTM C665, Type II (nonreflective faced), Class C (faced surface not rated for flame propagation); Category 1 (membrane is a vapor barrier).
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. CertainTeed Corporation.
 - b. CertainTeed Insulation.
 - c. Johns Manville; a Berkshire Hathaway company.
 - d. Knauf Insulation.
 - e. Owens Corning.
 - f.

.

2. Labeling: Provide identification of mark indicating R-value of each piece of insulation 12 inches and wider in width.

2.4 MINERAL-WOOL BOARD INSULATION

- A. Mineral-Wool Board Insulation, Types IA and IB, Unfaced : ASTM C612, Types IA and IB; passing ASTM E136 for combustion characteristics.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Johns Manville; a Berkshire Hathaway company.
 - b. Rockwool International.
 - c. Thermafiber, Inc.; an Owens Corning company.
 - d.
 - 2. Nominal Density: 4 lb/cu. ft..
 - 3. Flame-Spread Index: Not more than 15 when tested in accordance with ASTM E84.
 - 4. Smoke-Developed Index: Not more than zero when tested in accordance with ASTM E84.

5. Labeling: Provide identification of mark indicating R-value of each piece of insulation 12 inches and wider in width.

2.5 ACCESSORIES

- A. Insulation for Miscellaneous Voids:
 - 1. Glass-Fiber Insulation: ASTM C764, Type II, loose fill; with maximum flame-spread and smoke-developed indexes of 5, per ASTM E84.
 - 2. Spray Polyurethane Foam Insulation: ASTM C1029, Type II, closed cell, with maximum flame-spread and smoke-developed indexes of 75 and 450, respectively, per ASTM E84.
 - 3. Polyurethane Pour-In-Place Insulation: Closed cell, with maximum flame-spread and smoke-developed indexes of 75 and 450, respectively, per ASTM E84, specifically formulated for pour-in-place applications.
 - a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) Demilec (USA) LLC.
 - 2)
- B. Insulation Anchors, Spindles, and Standoffs: As recommended by manufacturer.
- C. Adhesive for Bonding Insulation: Product compatible with insulation and air and water barrier materials, and with demonstrated capability to bond insulation securely to substrates without damaging insulation and substrates.
- D. Eave Ventilation Troughs: Preformed, rigid fiberboard or plastic sheets designed and sized to fit between roof framing members and to provide ventilation between insulated attic spaces and vented eaves.

PART 3 - EXECUTION

- 3.1 INSTALLATION, GENERAL
 - A. Comply with insulation manufacturer's written instructions applicable to products and applications.
 - B. Install insulation that is undamaged, dry, and unsoiled and that has not been left exposed to ice, rain, or snow at any time.
 - C. Install insulation with manufacturer's R-value label exposed after insulation is installed.
 - D. Extend insulation to envelop entire area to be insulated. Fit tightly around obstructions and fill voids with insulation. Remove projections that interfere with placement.

E. Provide sizes to fit applications and selected from manufacturer's standard thicknesses, widths, and lengths. Apply single layer of insulation units unless multiple layers are otherwise shown or required to make up total thickness or to achieve R-value.

3.2 INSTALLATION OF SLAB INSULATION

- A. On vertical slab edge and foundation surfaces, set insulation units using manufacturer's recommended adhesive according to manufacturer's written instructions.
 - 1. If not otherwise indicated, extend insulation a minimum of 24 inches below exterior grade line.
- B. On horizontal surfaces, loosely lay insulation units according to manufacturer's written instructions. Stagger end joints and tightly abut insulation units.
 - 1. If not otherwise indicated, extend insulation a minimum of 24 inches in from exterior walls.

3.3 INSTALLATION OF FOUNDATION WALL INSULATION

- A. Butt panels together for tight fit.
- B. Anchor Installation: Install board insulation on concrete substrates by adhesively attached, spindle-type insulation anchors.
- C. Adhesive Installation: Install with adhesive or press into tacky waterproofing or dampproofing according to manufacturer's written instructions.

3.4 INSTALLATION OF CAVITY-WALL INSULATION

- A. Foam-Plastic Board Insulation: Install pads of adhesive spaced approximately 24 inches o.c. both ways on inside face and as recommended by manufacturer.
 - 1. Press units firmly against inside substrates.
 - 2. Supplement adhesive attachment of insulation by securing boards with two-piece wall ties designed for this purpose and specified in Section 04 20 00 "Unit Masonry."
- B. Mineral-Wool Board Insulation: Install insulation fasteners 4 inches from each corner of board insulation, at center of board, and as recommended by manufacturer.
 - 1. Press units firmly against inside substrates.

3.5 INSTALLATION OF INSULATION IN FRAMED CONSTRUCTION

A. Blanket Insulation: Install in cavities formed by framing members according to the following requirements:

- 1. Use insulation widths and lengths that fill the cavities formed by framing members. If more than one length is required to fill the cavities, provide lengths that will produce a snug fit between ends.
- 2. Place insulation in cavities formed by framing members to produce a friction fit between edges of insulation and adjoining framing members.
- 3. Maintain 3-inch clearance of insulation around recessed lighting fixtures not rated for or protected from contact with insulation.
- 4. Attics: Install eave ventilation troughs between roof framing members in insulated attic spaces at vented eaves.
- 5. For wood-framed construction, install blankets according to ASTM C1320 and as follows:
 - a. With faced blankets having stapling flanges, lap blanket flange over flange of adjacent blanket to maintain continuity of vapor retarder once finish material is installed over it.
- 6. Vapor-Retarder-Faced Blankets: Tape joints and ruptures in vapor-retarder facings, and seal each continuous area of insulation to ensure airtight installation.
 - a. Exterior Walls: Set units with facing placed toward interior of construction.
- B. Miscellaneous Voids: Install insulation in miscellaneous voids and cavity spaces where required to prevent gaps in insulation using the following materials:
 - 1. Glass-Fiber Insulation: Compact to approximately 40 percent of normal maximum volume equaling a density of approximately 2.5 lb/cu. ft..
 - 2. Spray Polyurethane Insulation: Apply according to manufacturer's written instructions.

3.6 INSTALLATION OF CURTAIN-WALL INSULATION

- A. Install board insulation in curtain-wall construction according to curtain-wall manufacturer's written instructions.
 - 1. Hold insulation in place by securing metal clips and straps or integral pockets within window frames, spaced at intervals recommended in writing by insulation manufacturer to hold insulation securely in place without touching spandrel glass. Maintain cavity width of dimension indicated on Drawings between insulation and glass.
 - 2. Install insulation to fit snugly without bowing.

END OF SECTION 07 21 00

SECTION 07 21 19 - FOAMED-IN-PLACE INSULATION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Closed-cell spray polyurethane foam.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.3 INFORMATIONAL SUBMITTALS

A. Product test reports.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.

PART 2 - PRODUCTS

2.1 CLOSED-CELL SPRAY POLYURETHANE FOAM

- A. Closed-Cell Spray Polyurethane Foam: ASTM C1029, Type II, minimum density of 1.5 lb/cu. ft. and minimum aged R-value at 1-inch thickness of 6.2 deg F x h x sq. ft./Btu at 75 deg F.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. BASF Corporation.
 - b. Carlisle Spray Foam Insulation.
 - c. Demilec (USA) LLC.
 - d. Gaco Western LLC.
 - e. Henry Company.
 - f. Icynene-Lapolla; Icynene.
 - g. Johns Manville; a Berkshire Hathaway company.
 - h. NCFI Polyurethanes; a division of Barnhardt Manufacturing Company.

- i. SWD Urethane Company.
- j. Volatile Free, Inc.
- k.
- 2. Surface-Burning Characteristics: Comply with ASTM E84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - a. Flame-Spread Index: 25 or less.
 - b. Smoke-Developed Index: 450 or less.
- 3. Fire Propagation Characteristics: Passes NFPA 285 and NFPA 276 testing as part of an approved assembly.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with insulation manufacturer's written instructions applicable to products and applications.
- B. Spray insulation to envelop entire area to be insulated and fill voids. Where applied to underside of floor sheathing, ensure thickness meets R-30 thermal insulation value.
- C. Apply in multiple passes to not exceed maximum thicknesses recommended by manufacturer. Do not spray into rising foam.

END OF SECTION 07 21 19

SECTION 07 25 00 - WEATHER BARRIERS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Building wrap. (Location: At Canopies over Plywood and as indicated on the drawings)
 - 2. Flexible flashing.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 WATER-RESISTIVE BARRIER

- A. Building Wrap: ASTM E 1677, Type I air barrier; with flame-spread and smoke-developed indexes of less than 25 and 450, respectively, when tested according to ASTM E 84; UV stabilized; and acceptable to authorities having jurisdiction.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. DuPont Building Innovations: E. I. du Pont de Nemours and Company; Tyvek CommercialWrap.
 - 2. Water-Vapor Permeance: Not less than 10 perms per ASTM E 96/E 96M, Desiccant Method (Procedure A).
- B. Building-Wrap Tape: Pressure-sensitive plastic tape recommended by building-wrap manufacturer for sealing joints and penetrations in building wrap.

2.2 FLEXIBLE FLASHING

A. Butyl Rubber Flashing: Basis-of-Design GCP "Grace Vycor Plus". Composite, self-adhesive, flashing product consisting of a pliable, butyl rubber compound, bonded to a high-density polyethylene film, aluminum foil, or spunbonded polyolefin to produce an overall thickness of not less than 0.025 inch.

PART 3 - EXECUTION

3.1 WATER-RESISTIVE BARRIER INSTALLATION

- A. Cover sheathing with water-resistive barrier as follows:
 - 1. Cut back barrier 1/2 inch on each side of the break in supporting members at expansionor control-joint locations.
 - 2. Apply barrier to cover vertical flashing with a minimum 4-inch overlap unless otherwise indicated.
- B. Building Wrap: Comply with manufacturer's written instructions and warranty requirements.
 - 1. Seal seams, edges, fasteners, and penetrations with tape.
 - 2. Extend into jambs of openings and seal corners with tape.

3.2 FLEXIBLE FLASHING INSTALLATION

- A. Apply flexible flashing where indicated to comply with manufacturer's written instructions.
 - 1. Lap seams and junctures with other materials at least 4 inches except that at flashing flanges of other construction, laps need not exceed flange width.
 - 2. Lap flashing over water-resistive barrier at bottom and sides of openings.
 - 3. Lap water-resistive barrier over flashing at heads of openings.

END OF SECTION 07 25 00

SECTION 07 26 00 - UNDER-SLAB VAPOR BARRIER

PART 1 - GENERAL

1.1 SUMMARY

- A. Products supplied under this section:
 - 1. Vapor barrier, seam tape, mastic, and pipe boots for installation under concrete slabs.

B. RELATED SECTIONS

1. Section 03 30 00 Cast-in-place Concrete.

1.2 **REFERENCES**

- A. American Society for Testing and Materials (ASTM)
 - 1. ASTM E 1745-97 Standard Specification for Plastic Water Vapor Retarders Used in Contact with Soil or Granular Fill Under Concrete Slabs.
 - 2. ASTM E 154-99 Standard Test Methods for Water Vapor Retarders Used in Contact with Earth Under Concrete Slabs.
 - 3. ASTM E 96-05 Standard Test Methods for Water Vapor Transmission of Materials.
 - 4. ASTM F 1249-06 Standard Test Method for Water Vapor Transmission Rate Through Plastic Film and Sheeting Using a Modulated Infrared Sensor.
 - 5. ASTM E 1643-98 Standard Practice for Installation of Water Vapor Retarders Used in Contact with Earth or Granular Fill Under Concrete Slabs.
- B. American Concrete Institute (ACI)
 - 1. ACI 302.1R-04 Vapor barrier component (plastic membrane) is not less than 10 mils thick.

1.3 SUBMITTALS

- A. Quality Control / Assurance
 - 1. Manufacturer's samples, literature.
 - 2. Manufacturer's installation instructions for placement, seaming and pipe boot installation.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Vapor Barrier must have all of the following qualities:
 - 1. Permeance of less than 0.01 Perms per ASTM F 1249 or ASTM E 96.
 - 2. ASTM E 1745 Class A.
- B. Vapor Barrier Products:
 - 1. Basis of Design: Stego Wrap Vapor Barrier (15-mil) by Stego Industries LLC, (877) 464-7834 www.stegoindustries.com.

2.2 ACCESSORIES

- A. Seam Tape:
 - 1. Permeance less than 0.3 perms per ASTM F 1249 or ASTM E 96.
 - 2. As recommended by manufacturer.
- B. Vapor Proofing Mastic:
 - 1. Permeance less than 0.3 perms per ASTM F 1249 or ASTM E 96.
 - 2. As recommended by manufacturer.
- C. Pipe Boots
 - 1. Construct pipe boots from vapor barrier material, pressure sensitive tape and/or mastic per manufacturer's instructions.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Ensure that subsoil is approved by Architect or Geotechnical Engineer.
 - 1. Level and tamp or roll aggregate, sand or granular base.

3.2 INSTALLATION

A. Install vapor barrier in accordance with manufacturer's instructions and ASTM E 1643-98.

- 1. Unroll vapor barrier with the longest dimension parallel with the direction of the concrete pour.
- 2. Lap vapor barrier over footings and/or seal to foundation walls.
- 3. Overlap joints 6 inches and seal with manufacturer's tape.
- 4. Seal all penetrations (including pipes) per manufacturer's instructions.
- 5. No penetration of the vapor barrier is allowed except for reinforcing steel and permanent utilities.
- 6. Repair damaged areas by cutting patches of vapor barrier, overlapping damaged area 6 inches and taping all four sides with tape.

END OF SECTION 07 26 00

SECTION 07 27 26 - FLUID-APPLIED MEMBRANE AIR BARRIERS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:1. Fluid-applied air barriers.
- B. Related Requirements:
 - 1. Section 04 20 00 "Unit Masonry" for CMU treatments.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include manufacturer's written instructions for evaluating, preparing, and treating each substrate; technical data; dry film thickness; and tested physical and performance properties of products.
- B. Shop Drawings: For air-barrier assemblies.
 - 1. Show locations and extent of air-barrier materials, accessories, and assemblies specific to Project conditions.
 - 2. Include details for substrate joints and cracks, counterflashing strips, penetrations, inside and outside corners, terminations, and tie-ins with adjoining construction.
 - 3. Include details of interfaces with other materials that form part of air barrier.

1.3 INFORMATIONAL SUBMITTALS

- A. Product Certificates: From air-barrier manufacturer, certifying compatibility of air barriers and accessory materials with Project materials that connect to or that come in contact with the barrier.
- B. Product Test Reports: For each air-barrier assembly, for tests performed by a qualified testing agency.
- C. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Remove and replace liquid materials that cannot be applied within their stated shelf life.
- B. Protect stored materials from direct sunlight.

1.6 FIELD CONDITIONS

- A. Environmental Limitations: Apply air barrier within the range of ambient and substrate temperatures recommended in writing by air-barrier manufacturer.
 - 1. Protect substrates from environmental conditions that affect air-barrier performance.
 - 2. Do not apply air barrier to a damp or wet substrate or during snow, rain, fog, or mist.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Air-Barrier Performance: Air-barrier assembly and seals with adjacent construction shall be capable of performing as a continuous air barrier and as a liquid-water drainage plane flashed to discharge to the exterior incidental condensation or water penetration. Air-barrier assemblies shall be capable of accommodating substrate movement and of sealing substrate expansion and control joints, construction material changes, penetrations, and transitions at perimeter conditions without deterioration and air leakage exceeding specified limits.
- B. Air-Barrier Assembly Air Leakage: Maximum 0.04 cfm/sq. ft. of surface area at 1.57 lbf/sq. ft. when tested according to ASTM E 2357.

2.2 HIGH-BUILD AIR BARRIERS, VAPOR RETARDING

- A. High-Build, Vapor-Retarding Air Barrier: synthetic polymer membrane with an installed dry film thickness, according to manufacturer's written instructions, of 35 milsor thicker over smooth, void-free substrates.
 - 1. Synthetic Polymer Type:
 - a. <u>Products: Subject to compliance with requirements, available products that may be</u> incorporated into the Work include, but are not limited to, the following:
 - 1) Carlisle Coatings & Waterproofing, Inc; Fire Resistant Barritech VP
 - 2) <u>Or approved equal</u>
 - 2. Physical and Performance Properties:

- a. Air Permeance: Maximum 0.004 cfm/sq. ft. of surface area at 1.57-lbf/sq. ft.pressure difference; ASTM E 2178.
- b. Vapor Permeance: Maximum 0.1 perm; ASTM E 96/E 96M, Desiccant Method.
- c. Ultimate Elongation: Minimum 200 percent; ASTM D 412, Die C.
- d. Adhesion to Substrate: Minimum 30 lbf/sq. in.when tested according to ASTM D 4541.
- e. Fire Propagation Characteristics: Passes NFPA 285 testing as part of an approved assembly.
- f. UV Resistance: Can be exposed to sunlight for 30 days according to manufacturer's written instructions.

2.3 ACCESSORY MATERIALS

- A. Requirement: Provide primers, transition strips, termination strips, joint reinforcing fabric and strips, joint sealants, counterflashing strips, flashing sheets and metal termination bars, termination mastic, substrate patching materials, adhesives, tapes, foam sealants, lap sealants, and other accessory materials that are recommended in writing by air-barrier manufacturer to produce a complete air-barrier assembly and that are compatible with primary air-barrier material and adjacent construction to which they may seal.
- B. Primer: Liquid waterborne primer recommended for substrate by air-barrier material manufacturer.
- C. Stainless-Steel Sheet: ASTM A 240/A 240M, Type 304, 0.0187 inchthick, and Series 300 stainless-steel fasteners.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.
 - 1. Verify that substrates are sound and free of oil, grease, dirt, excess mortar, or other contaminants.
 - 2. Verify that substrates have cured and aged for minimum time recommended in writing by air-barrier manufacturer.
 - 3. Verify that substrates are visibly dry and free of moisture.
 - 4. Verify that masonry joints are flush and completely filled with mortar.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 SURFACE PREPARATION

- A. Clean, prepare, treat, fill, and seal substrate and joints and cracks in substrate according to manufacturer's written instructions and details. Provide clean, dust-free, and dry substrate for air-barrier application.
- B. Mask off adjoining surfaces not covered by air barrier to prevent spillage and overspray affecting other construction.
- C. Remove grease, oil, bitumen, form-release agents, paints, curing compounds, and other penetrating contaminants or film-forming coatings from concrete.
- D. Remove fins, ridges, mortar, and other projections and fill honeycomb, aggregate pockets, holes, and other voids in concrete with substrate-patching material.
- E. Remove excess mortar from masonry ties, shelf angles, and other obstructions.
- F. At changes in substrate plane, apply sealant or termination mastic beads at sharp corners and edges to form a smooth transition from one plane to another.
- G. Cover gaps in substrate plane and form a smooth transition from one substrate plane to another with stainless-steel sheet mechanically fastened to structural framing to provide continuous support for air barrier.
- H. Bridge isolation joints and discontinuous wall-to-wall, deck-to-wall, and deck-to-deck joints with air-barrier accessory material that accommodates joint movement according to manufacturer's written instructions and details.

3.3 ACCESSORIES INSTALLATION

- A. Install accessory materials according to air-barrier manufacturer's written instructions and details to form a seal with adjacent construction and ensure continuity of air and water barrier.
 - 1. Coordinate the installation of air barrier with installation of roofing membrane and base flashing to ensure continuity of air barrier with roofing membrane.
 - 2. Install transition strip on roofing membrane or base flashing so that a minimum of 3 inchesof coverage is achieved over each substrate.
 - 3. Unless manufacturer recommends in writing against priming, apply primer to substrates at required rate and allow it to dry.
 - 4. Apply primer to substrates at required rate and allow it to dry. Limit priming to areas that will be covered by air-barrier material on same day. Reprime areas exposed for more than 24 hours.

- B. Connect and seal exterior wall air-barrier material continuously to roofing-membrane air barrier, concrete below-grade structures, floor-to-floor construction, exterior glazing and window systems, glazed curtain-wall systems, storefront systems, exterior louvers, exterior door framing, and other construction used in exterior wall openings, using accessory materials.
- C. At end of each working day, seal top edge of strips and transition strips to substrate with termination mastic.
- D. Apply joint sealants forming part of air-barrier assembly within manufacturer's recommended application temperature ranges. Consult manufacturer when sealant cannot be applied within these temperature ranges.
- E. Wall Openings: Prime concealed, perimeter frame surfaces of windows, curtain walls, storefronts, and doors. Apply preformed silicone extrusion so that a minimum of 3 inches of coverage is achieved over each substrate. Maintain 3 inches of full contact over firm bearing to perimeter frames, with not less than 1 inch of full contact.
 - 1. Transition Strip: Roll firmly to enhance adhesion.
 - 2. Preformed Silicone Extrusion: Set in full bed of silicone sealant applied to walls, frame, and air-barrier material.
- F. Fill gaps in perimeter frame surfaces of windows, curtain walls, storefronts, and doors, and miscellaneous penetrations of air-barrier material with foam sealant.
- G. Seal strips and transition strips around masonry reinforcing or ties and penetrations with termination mastic.
- H. Seal top of through-wall flashings to air barrier with an additional 6-inch-wide, transition strip.
- I. Seal exposed edges of strips at seams, cuts, penetrations, and terminations not concealed by metal counterflashings or ending in reglets with termination mastic.
- J. Repair punctures, voids, and deficient lapped seams in strips and transition strips. Slit and flatten fishmouths and blisters. Patch with transition strips extending 6 inches beyond repaired areas in strip direction.

3.4 PRIMARY AIR-BARRIER MATERIAL INSTALLATION

- A. Apply air-barrier material to form a seal with strips and transition strips and to achieve a continuous air barrier according to air-barrier manufacturer's written instructions and details. Apply air-barrier material within manufacturer's recommended application temperature ranges.
 - 1. Unless manufacturer recommends in writing against priming, apply primer to substrates at required rate and allow it to dry.
 - 2. Limit priming to areas that will be covered by air-barrier material on same day. Reprime areas exposed for more than 24 hours.

- 3. Where multiple prime coats are needed to achieve required bond, allow adequate drying time between coats.
- B. High-Build Air Barriers: Apply continuous unbroken air-barrier material to substrates according to the following thickness. Apply air-barrier material in full contact around protrusions such as masonry ties.
 - 1. Vapor-Permeable, High-Build Air Barrier: Total dry film thickness as recommended in writing by manufacturer to comply with performance requirements, but not less than 35 mils, applied in one or more equal coats.
- C. Do not cover air barrier until it has been tested and inspected by testing agency.
- D. Correct deficiencies in or remove air barrier that does not comply with requirements; repair substrates and reapply air-barrier components.

3.5 FIELD QUALITY CONTROL

- A. Inspections: Air-barrier materials, accessories, and installation are subject to inspection for compliance with requirements.
- B. Tests: As determined by owner from among the following tests:
 - 1. Air-Leakage-Location Testing: Air-barrier assemblies will be tested for evidence of air leakage according to ASTM E 1186, chamber pressurization or depressurization with smoke tracers, ASTM E 1186, chamber depressurization using detection liquids.
 - 2. Air-Leakage-Volume Testing: Air-barrier assemblies will be tested for air-leakage rate according to ASTM E 783.
 - 3. Adhesion Testing: Air-barrier assemblies will be tested for required adhesion to substrate according to ASTM D 4541 for each 600 sq. ft.of installed air barrier or part thereof.
- C. Air barriers will be considered defective if they do not pass tests and inspections.
 - 1. Apply additional air-barrier material, according to manufacturer's written instructions, where inspection results indicate insufficient thickness.
 - 2. Remove and replace deficient air-barrier components for retesting as specified above.
- D. Repair damage to air barriers caused by testing; follow manufacturer's written instructions.
- E. Prepare test and inspection reports.

3.6 CLEANING AND PROTECTION

A. Protect air-barrier system from damage during application and remainder of construction period, according to manufacturer's written instructions.

- 1. Protect air barrier from exposure to UV light and harmful weather exposure as recommended in writing by manufacturer. If exposed to these conditions for longer than recommended, remove and replace air barrier or install additional, full-thickness, air-barrier application after repairing and preparing the overexposed materials according to air-barrier manufacturer's written instructions.
- 2. Protect air barrier from contact with incompatible materials and sealants not approved by air-barrier manufacturer.
- B. Clean spills, stains, and soiling from construction that would be exposed in the completed work using cleaning agents and procedures recommended in writing by manufacturer of affected construction.
- C. Remove masking materials after installation.

END OF SECTION 07 27 26

SECTION 07 41 13.16 - STANDING-SEAM METAL ROOF PANELS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Standing-seam metal roof panels and roof underlayment.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Include fabrication and installation layouts of metal panels; details of edge conditions, joints, panel profiles, corners, anchorages, attachment system, trim, flashings, closures, and accessories; and special details.
- C. Samples: For each type of metal panel indicated.

1.3 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

1.4 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of metal panel systems that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Two years from date of Substantial Completion.
- B. Special Warranty on Panel Finishes: Manufacturer's standard form in which manufacturer agrees to repair finish or replace metal panels that show evidence of deterioration of factory-applied finishes within specified warranty period.
 - 1. Finish Warranty Period: 20 years from date of Substantial Completion.
- C. Special Weathertightness Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace standing-seam metal roof panel assemblies that fail to remain weathertight, including leaks, within specified warranty period.
 - 1. Warranty Period: 20 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Structural Performance: Provide metal panel systems capable of withstanding the effects of the following loads, based on testing according to ASTM E1592:
 - 1. Wind Loads: As indicated on Drawings.
 - 2. Deflection Limits: For wind loads, no greater than 1/240 of the span.
 - 3.
- B. Air Infiltration: Air leakage of not more than 0.06 cfm/sq. ft. when tested according to ASTM E1680 at the following test-pressure difference:
 - 1. Test-Pressure Difference: 1.57 lbf/sq. ft..
- C. Water Penetration under Static Pressure: No water penetration when tested according to ASTM E1646 at the following test-pressure difference:
 - 1. Test-Pressure Difference: 2.86 lbf/sq. ft..
- D. Wind-Uplift Resistance: Provide metal roof panel assemblies that comply with UL 580 for wind-uplift-resistance class indicated.
 - 1. Uplift Rating: UL 60.
- E. FM Global Listing: Provide metal roof panels and component materials that comply with requirements in FM Global 4471 as part of a panel roofing system and that are listed in FM Global's "Approval Guide" for Class 1 or noncombustible construction, as applicable. Identify materials with FM Global markings.
 - 1. Hail Resistance: MH.
- F. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes by preventing buckling, opening of joints, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Base calculations on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.
 - 1. Temperature Change (Range): 120 deg F, ambient; 180 deg F, material surfaces.

2.2 STANDING-SEAM METAL ROOF PANELS

A. Provide factory-formed metal roof panels designed to be installed by lapping and interconnecting raised side edges of adjacent panels with joint type indicated and mechanically attaching panels to supports using concealed clips in side laps. Include clips, cleats, pressure plates, and accessories required for weathertight installation.

- 1. Aluminum Panel Systems: Unless more stringent requirements are indicated, comply with ASTM E1637.
- B. Vertical-Rib, Snap-Joint, Standing-Seam Metal Roof Panels : Formed with vertical ribs at panel edges and a flat pan between ribs; designed for sequential installation by mechanically attaching panels to supports using concealed clips located under one side of panels, engaging opposite edge of adjacent panels, and snapping panels together.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide "PAC-CLAD Snap-Clad" or comparable product by one of the following:
 - a. Berridge Manufacturing Company.
 - b. CENTRIA Architectural Systems.
 - c. Dimensional Metals, Inc.
 - d. Fabral.

.

- e. Metal Sales Manufacturing Corporation.
- f. Morin A Kingspan Group Company.
- g. PAC-CLAD; Petersen Aluminum Corporation.
- h.
- 2. Aluminum Sheet: Coil-coated sheet, ASTM B209, alloy as standard with manufacturer, with temper as required to suit forming operations and structural performance required.
 - a. Thickness: 0.040 inch.
 - b. Surface: Smooth, flat finish.
 - c. Exterior Finish: Two-coat fluoropolymer.
 - d. Color: As selected by Architect from manufacturer's full range.
- 3. Clips: One-piece fixed to accommodate thermal movement.
 - a. Material: 0.064-inch- nominal thickness, zinc-coated (galvanized) or aluminum-zinc alloy-coated steel sheet.
- 4. Panel Coverage: 12 inches .
- 5. Panel Height: 1.75 inches.

2.3 UNDERLAYMENT MATERIALS

- A. Self-Adhering, High-Temperature Underlayment: Provide self-adhering, cold-applied, sheet underlayment, a minimum of 30 mils thick, consisting of slip-resistant, polyethylene-film top surface laminated to a layer of butyl or SBS-modified asphalt adhesive, with release-paper backing. Provide primer when recommended by underlayment manufacturer.
 - 1. Thermal Stability: Stable after testing at 240 deg F; ASTM D1970.
 - 2. Low-Temperature Flexibility: Passes after testing at minus 20 deg F; ASTM D1970.
 - 3. Basis-of-Design: Subject to compliance with requirements, provide "GCP Grace Ice & Water Shield HT" or comparable product by one of the following:

- a. Carlisle Residential; a division of Carlisle Construction Materials.
- b. GCP Applied Technologies Inc.
- c. Owens Corning.
- B. Felt Underlayment: ASTM D226/D226M, Type II (No. 30), asphalt-saturated organic felts.
- C. Slip Sheet: Manufacturer's recommended slip sheet, of type required for application.

2.4 MISCELLANEOUS MATERIALS

- A. Miscellaneous Metal Subframing and Furring: ASTM C645; cold-formed, metallic-coated steel sheet, ASTM A653/A653M, G90 coating designation or ASTM A792/A792M, Class AZ50 coating designation unless otherwise indicated. Provide manufacturer's standard sections as required for support and alignment of metal panel system.
- B. Panel Accessories: Provide components required for a complete, weathertight panel system including trim, copings, fasciae, mullions, sills, corner units, clips, flashings, sealants, gaskets, fillers, closure strips, and similar items. Match material and finish of metal panels unless otherwise indicated.
 - 1. Closures: Provide closures at eaves and ridges, fabricated of same metal as metal panels.
 - 2. Backing Plates: Provide metal backing plates at panel end splices, fabricated from material recommended by manufacturer.
 - 3. Closure Strips: Closed-cell, expanded, cellular, rubber or crosslinked, polyolefin-foam or closed-cell laminated polyethylene; minimum 1-inch- thick, flexible closure strips; cut or premolded to match metal panel profile. Provide closure strips where indicated or necessary to ensure weathertight construction.
- C. Flashing and Trim: Provide flashing and trim formed from same material as metal panels as required to seal against weather and to provide finished appearance. Locations include, but are not limited to, eaves, rakes, corners, bases, framed openings, ridges, fasciae, and fillers. Finish flashing and trim with same finish system as adjacent metal panels.
- D. Gutters and Downspouts: Formed from same material as roof panels according to SMACNA's "Architectural Sheet Metal Manual." Finish to match [metal roof panels] [roof fascia and rake trim].
- E. Panel Fasteners: Self-tapping screws designed to withstand design loads.
- F. Panel Sealants: Provide sealant type recommended by manufacturer that are compatible with panel materials, are nonstaining, and do not damage panel finish.
 - 1. Sealant Tape: Pressure-sensitive, 100 percent solids, gray polyisobutylene compound sealant tape with release-paper backing; 1/2 inch wide and 1/8 inch thick.
 - 2. Joint Sealant: ASTM C920; as recommended in writing by metal panel manufacturer.
 - 3. Butyl-Rubber-Based, Solvent-Release Sealant: ASTM C1311.

2.5 FABRICATION

- A. Fabricate and finish metal panels and accessories at the factory, by manufacturer's standard procedures and processes, as necessary to fulfill indicated performance requirements demonstrated by laboratory testing. Comply with indicated profiles and with dimensional and structural requirements.
- B. On-Site Fabrication: Subject to compliance with requirements of this Section, metal panels may be fabricated on-site using UL-certified, portable roll-forming equipment if panels are of same profile and warranted by manufacturer to be equal to factory-formed panels. Fabricate according to equipment manufacturer's written instructions and to comply with details shown.
- C. Provide panel profile, including major ribs and intermediate stiffening ribs, if any, for full length of panel.
- D. Fabricate metal panel joints with factory-installed captive gaskets or separator strips that provide a weathertight seal and prevent metal-to-metal contact, and that minimize noise from movements.
- E. Sheet Metal Flashing and Trim: Fabricate flashing and trim to comply with manufacturer's recommendations and recommendations in SMACNA's "Architectural Sheet Metal Manual" that apply to design, dimensions, metal, and other characteristics of item indicated.

2.6 FINISHES

- A. Panels and Accessories:
 - 1. Two-Coat Fluoropolymer: [AAMA 621] [AAMA 2605]. Fluoropolymer finish containing not less than 70 percent polyvinylidene fluoride (PVDF) resin by weight in color coat.
 - 2. Concealed Finish: White or light-colored acrylic or polyester backer finish.

PART 3 - EXECUTION

3.1 PREPARATION

A. Miscellaneous Supports: Install subframing, furring, and other miscellaneous panel support members and anchorages according to ASTM C754 and metal panel manufacturer's written recommendations.

3.2 INSTALLATION OF UNDERLAYMENT

- A. Self-Adhering Sheet Underlayment: Apply primer if required by manufacturer. Comply with temperature restrictions of underlayment manufacturer for installation. Apply at locations indicated [below] [on Drawings], wrinkle free, in shingle fashion to shed water, and with end laps of not less than 6 inches staggered 24 inches between courses. Overlap side edges not less than 3-1/2 inches. Extend underlayment into gutter trough. Roll laps with roller. Cover underlayment within 14 days.
 - 1. Apply over the entire roof surface.
- B. Felt Underlayment: Apply at locations indicated [below] [on Drawings], in shingle fashion to shed water, and with lapped joints of not less than 2 inches.
 - 1. Apply over the entire roof surface.
- C. Slip Sheet: Apply slip sheet over underlayment before installing metal roof panels.
- D. Flashings: Install flashings to cover underlayment to comply with requirements specified in Section 07 62 00 "Sheet Metal Flashing and Trim."

3.3 INSTALLATION OF STANDING SEAM METAL ROOF PANELS

- A. Standing-Seam Metal Roof Panel Installation: Fasten metal roof panels to supports with concealed clips at each standing-seam joint at location, spacing, and with fasteners recommended in writing by manufacturer.
 - 1. Install clips to supports with self-tapping fasteners.
 - 2. Install pressure plates at locations indicated in manufacturer's written installation instructions.
 - 3. Snap Joint: Nest standing seams and fasten together by interlocking and completely engaging factory-applied sealant.
 - 4. Watertight Installation:
 - a. Apply a continuous ribbon of sealant or tape to seal joints of metal panels, using sealant or tape as recommend in writing by manufacturer as needed to make panels watertight.
 - b. Provide sealant or tape between panels and protruding equipment, vents, and accessories.
 - c. At panel splices, nest panels with minimum 6-inch end lap, sealed with sealant and fastened together by interlocking clamping plates.
- B. Accessory Installation: Install accessories with positive anchorage to building and weathertight mounting, and provide for thermal expansion. Coordinate installation with flashings and other components.

C. Flashing and Trim: Comply with performance requirements, manufacturer's written installation instructions, and SMACNA's "Architectural Sheet Metal Manual." Provide concealed fasteners where possible, and set units true to line and level as indicated. Install work with laps, joints, and seams that will be permanently watertight and weather resistant.

3.4 CLEANING AND PROTECTION

A. Remove temporary protective coverings and strippable films, if any, as metal panels are installed, unless otherwise indicated in manufacturer's written installation instructions. On completion of metal panel installation, clean finished surfaces as recommended by metal panel manufacturer. Maintain in a clean condition during construction.

END OF SECTION 07 41 13.16

SECTION 07 42 13.13 - FORMED METAL WALL PANELS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Concealed-fastener, lap-seam metal wall panels (including soffits vented and non vented)

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Include fabrication and installation layouts of metal panels; details of edge conditions, joints, panel profiles, corners, anchorages, attachment system, trim, flashings, closures, and accessories; and special details.
- C. Samples: For each type of metal panel indicated.

1.3 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of metal panel systems that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Two years from date of Substantial Completion.
- B. Special Warranty on Panel Finishes: Manufacturer's standard form in which manufacturer agrees to repair finish or replace metal panels that show evidence of deterioration of factory-applied finishes within specified warranty period.
 - 1. Finish Warranty Period: 30r years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Recycled Content of Steel Products: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.
- B. Structural Performance: Provide metal panel systems capable of withstanding the effects of the following loads, based on testing according to ASTM E 1592:

- 1. Wind Loads: In compliance with current ASCE 7-10 wind loading requirements
- 2. Panels to be certified to be without permanent deformation or failure of structural members.
- 3. Deflection Limits: For wind loads, no greater than 1/240 of the span.
- C. Air Infiltration: Air leakage of not more than 0.06 cfm/sq. ft. when tested according to ASTM E 283 at the following test-pressure difference:
 - 1. Test-Pressure Difference: 1.57 lbf/sq. ft..
- D. Water Penetration under Static Pressure: No water penetration when tested according to ASTM E 331 at the following test-pressure difference:
 - 1. Test-Pressure Difference: 2.86 lbf/sq. ft..
- E. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes by preventing buckling, opening of joints, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Base calculations on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.
 - 1. Temperature Change (Range): 120 deg F, ambient; 180 deg F, material surfaces.

2.2 CONCEALED-FASTENER, LAP-SEAM METAL WALL AND SOFFIT PANELS

- A. General: Provide factory-formed metal panels designed to be field assembled by lapping and interconnecting side edges of adjacent panels and mechanically attaching through panel to supports using concealed fasteners and factory-applied sealant in side laps. Include accessories required for weathertight installation.
- B. Flush-Profile, Concealed-Fastener Metal Wall Panels Insert drawing designation: Formed with vertical panel edges and a flat pan between panel edges; with flush joint between panels.
 - Basis-of-Design Product: Subject to compliance with requirements, provide PAC-CLAD (Petersen Aluminum Corporation) 12" Flush Wall Panel, PAC-CLAD 12" Flush Soffit Panel, and PAC-CLAD 12" Flush Wide Vent Soffit Panel or comparable products by one of the following:
 - a. AEP Span; a BlueScope Steel company.
 - b. Alcoa Inc.
 - c. CENTRIA Architectural Systems.
 - d. MBCI; a division of NCI Building Systems, L.P.
 - e. Morin; a Kingspan Group company.
 - 2. Aluminum Sheet: Coil-coated sheet, ASTM B 209, alloy as standard with manufacturer, with temper as required to suit forming operations and structural performance required.
 - a. Thickness: 0.040 inch.

- b. Surface: Smooth, flat finish.
- c. Exterior Finish: Two-coat fluoropolymer.
- d. Color: As selected by Architect from manufacturer's full range.
- 3. Panel Coverage: 12 inches.
- 4. Panel Height: 1.0 inch.

2.3 MISCELLANEOUS MATERIALS

- A. Miscellaneous Metal Subframing and Furring (required where exterior wall requires exterior insulation board): ASTM C 645, cold-formed, metallic-coated steel sheet, ASTM A 653/A 653M, G90 coating designation or ASTM A 792/A 792M, Class AZ50 aluminum-zinc-alloy coating designation unless otherwise indicated. Provide manufacturer's standard sections as required for support and alignment of metal panel system.
- B. Panel Accessories: Provide components required for a complete, weathertight panel system including trim, copings, fascia, mullions, sills, corner units, clips, flashings, sealants, gaskets, fillers, closure strips, and similar items. Match material and finish of metal panels unless otherwise indicated.
 - 1. Closures: Provide closures at eaves and rakes, fabricated of same metal as metal panels.
 - 2. Backing Plates: Provide metal backing plates at panel end splices, fabricated from material recommended by manufacturer.
 - 3. Closure Strips: Closed-cell, expanded, cellular, rubber or crosslinked, polyolefin-foam or closed-cell laminated polyethylene; minimum 1-inch- thick, flexible closure strips; cut or premolded to match metal panel profile. Provide closure strips where indicated or necessary to ensure weathertight construction.
- C. Flashing and Trim: Provide flashing and trim formed from same material as metal panels as required to seal against weather and to provide finished appearance. Locations include, but are not limited to, bases, drips, sills, jambs, corners, endwalls, framed openings, rakes, fasciae, parapet caps, soffits, reveals, and fillers. Finish flashing and trim with same finish system as adjacent metal panels.
- D. Panel Fasteners: Self-tapping screws designed to withstand design loads. Provide exposed fasteners with heads matching color of metal panels by means of plastic caps or factory-applied coating. Provide EPDM or PVC sealing washers for exposed fasteners.
- E. Panel Sealants: Provide sealant type recommended by manufacturer that are compatible with panel materials, are nonstaining, and do not damage panel finish.
 - 1. Sealant Tape: Pressure-sensitive, 100 percent solids, gray polyisobutylene compound sealant tape with release-paper backing; 1/2 inch wide and 1/8 inchthick.
 - 2. Joint Sealant: ASTM C 920; as recommended in writing by metal panel manufacturer.
 - 3. Butyl-Rubber-Based, Solvent-Release Sealant: ASTM C 1311.

2.4 FABRICATION

- A. General: Fabricate and finish metal panels and accessories at the factory, by manufacturer's standard procedures and processes, as necessary to fulfill indicated performance requirements demonstrated by laboratory testing. Comply with indicated profiles and with dimensional and structural requirements.
- B. On-Site Fabrication: Subject to compliance with requirements of this Section, metal panels may be fabricated on-site using UL-certified, portable roll-forming equipment if panels are of same profile and warranted by manufacturer to be equal to factory-formed panels. Fabricate according to equipment manufacturer's written instructions and to comply with details shown.
- C. Provide panel profile, including major ribs and intermediate stiffening ribs, if any, for full length of panel.
- D. Fabricate metal panel joints with factory-installed captive gaskets or separator strips that provide a weathertight seal and prevent metal-to-metal contact, and that minimize noise from movements.
- E. Sheet Metal Flashing and Trim: Fabricate flashing and trim to comply with manufacturer's recommendations and recommendations in SMACNA's "Architectural Sheet Metal Manual" that apply to design, dimensions, metal, and other characteristics of item indicated.

2.5 FINISHES

- A. Panels and Accessories:
 - 1. Two-Coat Fluoropolymer: AAMA 621. Fluoropolymer finish containing not less than 70 percent PVDF resin by weight in color coat.
 - 2. Concealed Finish: White or light-colored acrylic or polyester backer finish.

PART 3 - EXECUTION

3.1 PREPARATION

A. Miscellaneous Supports: Install subframing, furring, and other miscellaneous panel support members and anchorages according to ASTM C 754 and metal panel manufacturer's written recommendations.

3.2 METAL PANEL INSTALLATION

A. Lap-Seam Metal Panels: Fasten metal panels to supports with fasteners at each lapped joint at location and spacing recommended by manufacturer.

- 1. Lap ribbed or fluted sheets one full rib. Apply panels and associated items true to line for neat and weathertight enclosure.
- 2. Provide metal-backed washers under heads of exposed fasteners bearing on weather side of metal panels.
- 3. Locate and space exposed fasteners in uniform vertical and horizontal alignment. Use proper tools to obtain controlled uniform compression for positive seal without rupture of washer.
- 4. Install screw fasteners with power tools having controlled torque adjusted to compress washer tightly without damage to washer, screw threads, or panels. Install screws in predrilled holes.
- 5. Flash and seal panels with weather closures at perimeter of all openings.
- B. Watertight Installation:
 - 1. Apply a continuous ribbon of sealant or tape to seal lapped joints of metal panels, using sealant or tape as recommend by manufacturer on side laps of nesting-type panels; and elsewhere as needed to make panels watertight.
 - 2. Provide sealant or tape between panels and protruding equipment, vents, and accessories.
 - 3. At panel splices, nest panels with minimum 4-inch end lap, sealed with sealant and fastened together by interlocking clamping plates.
- C. Accessory Installation: Install accessories with positive anchorage to building and weathertight mounting, and provide for thermal expansion. Coordinate installation with flashings and other components.

3.3 CLEANING

A. Remove temporary protective coverings and strippable films, if any, as metal panels are installed, unless otherwise indicated in manufacturer's written installation instructions. On completion of metal panel installation, clean finished surfaces as recommended by metal panel manufacturer. Maintain in a clean condition during construction.

END OF SECTION 07 42 13.13

SECTION 07 46 46 - FIBER-CEMENT SIDING

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes fiber-cement siding.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples: For fiber-cement siding including related accessories.

1.3 CLOSEOUT SUBMITTALS

A. Maintenance data.

1.4 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace products that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: 25 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 FIBER-CEMENT SIDING

- A. General: ASTM C 1186, Type A, Grade II, fiber-cement board, noncombustible when tested according to ASTM E 136; with a flame-spread index of 25 or less when tested according to ASTM E 84.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide James Hardie Building Products "HardiePanel Vertical Siding" and "HardieTrim Boards" or comparable product by one of the following:
 - a. CertainTeed Corporation.
 - b. GAF Materials Corporation.
 - c. James Hardie Building Products, Inc.
 - d. MaxiTile, Inc.
 - e. Nichiha Fiber Cement.
 - f. Norandex Building Materials Distribution, Inc.

- B. Labeling: Provide fiber-cement siding that is tested and labeled according to ASTM C 1186 by a qualified testing agency acceptable to authorities having jurisdiction.
- C. Nominal Thickness: Not less than 5/16 inch.
- D. Vertical Pattern: 48-inch- wide sheets with smooth texture.
- E. Panel Texture: 48-inch- wide sheets with smooth texture.
- F. Factory Priming: Manufacturer's standard acrylic primer.

2.2 ACCESSORIES

- A. Siding Accessories, General: Provide starter strips, edge trim, outside and inside corner caps, and other items as recommended by siding manufacturer for building configuration.
- B. Flashing: Provide stainless-steel flashing complying with Section 07 62 00 "Sheet Metal Flashing and Trim" at window and door heads and where indicated.
 - 1. Finish for Aluminum Flashing: Factory-prime coating.

C. Fasteners:

- 1. For fastening to wood, use siding nails ribbed bugle-head screws of sufficient length to penetrate a minimum of 1 inch into substrate.
- 2. For fastening to metal, use ribbed bugle-head screws of sufficient length to penetrate a minimum of 1/4 inch, or three screw-threads, into substrate.
- 3. For fastening fiber cement, use stainless-steel fasteners.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General: Comply with manufacturer's written installation instructions applicable to products and applications indicated unless more stringent requirements apply.
 - 1. Install fasteners no more than 24 inches o.c.
- B. Install joint sealants as specified in Section 07 92 00 "Joint Sealants" and to produce a weathertight installation.

3.2 ADJUSTING AND CLEANING

A. Remove damaged, improperly installed, or otherwise defective materials and replace with new materials complying with specified requirements.

B. Clean finished surfaces according to manufacturer's written instructions and maintain in a clean condition during construction.

END OF SECTION 07 46 46

SECTION 07 53 23 - ETHYLENE-PROPYLENE-DIENE-MONOMER (EPDM) ROOFING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Mechanically fastened ethylene-propylene-diene-monomer (EPDM) roofing system.
 - 2. Cover Board
- B. Related Sections
 - 1. Section 07 21 00 Thermal Insulation

1.2 DEFINITIONS

A. Roofing Terminology: Definitions in ASTM D 1079 and glossary of NRCA's "The NRCA Roofing and Waterproofing Manual" apply to work of this Section.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For roofing system. Include plans, elevations, sections, details, and attachments to other work.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance Data: For roofing system to include in maintenance manuals.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: A qualified firm that is approved, authorized, or licensed by roofing system manufacturer to install manufacturer's product and that is eligible to receive manufacturer's special warranty.

1.6 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of roofing system that fail in materials or workmanship within specified warranty period.

1. Warranty Period: 20 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain components including roof insulation for roofing system from same manufacturer as membrane roofing ormanufacturer approved by membrane roofing manufacturer.

2.2 PERFORMANCE REQUIREMENTS

- A. Accelerated Weathering: Roofing system shall withstand 2000 hours of exposure when tested according to ASTM G 152, ASTM G 154, or ASTM G 155.
- B. Impact Resistance: Roofing system shall resist impact damage when tested according to ASTM D 3746 or ASTM D 4272.
- C. Roofing System Design: Tested by a qualified testing agency to resist the following uplift pressures:
 - 1. Corner Uplift Pressure: 120 lb/sq.ft..
 - 2. Perimeter Uplift Pressure: 80 lbf/sq. ft..
 - 3. Field-of-Roof Uplift Pressure: 50 lbf/sq. ft..
- D. Energy Star Listing: Roofing system shall be listed on the DOE's ENERGY STAR "Roof Products Qualified Product List" for low -slope roof products.
- E. Exterior Fire-Test Exposure: ASTM E 108 or UL 790, Class A; for application and roof slopes indicated; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
- F. Fire-Resistance Ratings: Comply with fire-resistance-rated assembly designs indicated. Identify products with appropriate markings of applicable testing agency.

2.3 EPDM ROOFING

- A. EPDM: ASTM D 4637, Type I, nonreinforced, uniform, flexible EPDM sheet.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Carlisle SynTec Incorporated.
- b. Firestone Building Products.
- c. GAF Materials Corporation.
- d. Johns Manville
- 2. Thickness: 60 mils Insert thickness, nominal.
- 3. Exposed Face Color: White on black.

2.4 AUXILIARY ROOFING MATERIALS

- A. General: Auxiliary materials recommended by roofing system manufacturer for intended use and compatible with roofing.
 - 1. Liquid-type auxiliary materials shall comply with VOC limits of authorities having jurisdiction.
 - 2. Adhesives and sealants that are not on the exterior side of weather barrier shall comply with the following limits for VOC content:
 - a. Plastic Foam Adhesives: 50 g/L.
 - b. Gypsum Board and Panel Adhesives: 50 g/L.
 - c. Multipurpose Construction Adhesives: 70 g/L.
 - d. Fiberglass Adhesives: 80 g/L.
 - e. Single-Ply Roof Membrane Adhesives: 250 g/L.
 - f. Single-Ply Roof Membrane Sealants: 450 g/L.
 - g. Nonmembrane Roof Sealants: 300 g/L.
 - h. Sealant Primers for Nonporous Substrates: 250 g/L.
 - i. Sealant Primers for Porous Substrates: 775 g/L.
 - j. Other Adhesives and Sealants: 250 g/L.
 - 3. Adhesives and sealants that are not on the exterior side of weather barrier shall comply with the testing and product requirements of the California Department of Public Health's (formerly, the California Department of Health Services') "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."
- B. Sheet Flashing: 60-mil- thick EPDM, partially cured or cured, according to application.
- C. Protection Sheet: Epichlorohydrin or neoprene nonreinforced flexible sheet, 55- to 60-milthick, recommended by EPDM manufacturer for resistance to hydrocarbons, non-aromatic solvents, grease, and oil.
- D. Bonding Adhesive: Manufacturer's standard, water based.
- E. Seaming Material: Manufacturer's standard, synthetic-rubber polymer primer and 3-inch- wide minimum, butyl splice tape with release film.

- F. Fasteners: Factory-coated steel fasteners and metal or plastic plates complying with corrosion-resistance provisions in FM Global 4470, designed for fastening membrane to substrate, and acceptable to roofing system manufacturer.
- G. Miscellaneous Accessories: Provide lap sealant, water cutoff mastic, metal termination bars, metal battens, pourable sealers, preformed cone and vent sheet flashings, molded pipe boot flashings, preformed inside and outside corner sheet flashings, reinforced EPDM securement strips, T-joint covers, in-seam sealants, termination reglets, cover strips, and other accessories.

2.5 ROOF INSULATION

- A. Polyisocyanurate Board Insulation: Refer to Specification Section 072100 Thermal Insulation
- B. Tapered Insulation: Provide factory-tapered insulation boards fabricated to slope of 1/4 inch per 12 inches unless otherwise indicated.
- C. Provide preformed saddles, crickets, tapered edge strips, and other insulation shapes where indicated for sloping to drain. Fabricate to slopes indicated.

2.6 INSULATION ACCESSORIES

- A. Fasteners: Factory-coated steel fasteners and metal or plastic plates complying with corrosion-resistance provisions in FM Global 4470, designed for fastening roof insulation and cover boards to substrate, and acceptable to roofing system manufacturer.
- B. Insulation Adhesive: Insulation manufacturer's recommended adhesive formulated to attach roof insulation to substrate or to another insulation layer.
- C. Cover Board: ASTM C 1177/C 1177M, glass-mat, water-resistant gypsum substrate, 1/2 inch thick.
- D. Protection Mat: Woven or nonwoven polypropylene, polyolefin, or polyester fabric, water permeable and resistant to UV degradation, type and weight as recommended by roofing system manufacturer for application.

2.7 WALKWAYS

- A. Flexible Walkways: Factory-formed, nonporous, heavy-duty, solid-rubber, slip-resisting, surface-textured walkway [**pads**] [**or**] [**rolls**], approximately 3/16 inch thick and acceptable to roofing system manufacturer.
- B. Walkway Roof Pavers: Heavyweight, hydraulically pressed concrete units, with top edges beveled 3/16 inch, factory cast for use as roof pavers; absorption not greater than 5 percent, ASTM C 140; no breakage and maximum 1 percent mass loss when tested for freeze-thaw resistance, ASTM C 67; and as follows:

- 1. Size: 24 by 24 inches. Manufacture pavers to dimensional tolerances of plus or minus 1/16 inch in length, height, and thickness.
- 2. Weight: 18 lb/sq. ft..
- 3. Colors and Textures: As selected by Architect from manufacturer's full range.

PART 3 - EXECUTION

3.1 ROOFING INSTALLATION, GENERAL

- A. Install roofing system according to roofing system manufacturer's written instructions.
- B. Complete terminations and base flashings and provide temporary seals to prevent water from entering completed sections of roofing system at the end of the workday or when rain is forecast. Remove and discard temporary seals before beginning work on adjoining roofing.
- C. Install roofing and auxiliary materials to tie in to existing roofing to maintain weathertightness of transition.

3.2 INSULATION INSTALLATION

- A. Coordinate installing roofing system components so insulation is not exposed to precipitation or left exposed at the end of the workday.
- B. Install tapered insulation under area of roofing to conform to slopes indicated.
- C. Install insulation under area of roofing to achieve required thickness. Where overall insulation thickness is 2.7 inches or greater, install two or more layers with joints of each succeeding layer staggered from joints of previous layer a minimum of 6 inches in each direction.
 - 1. Where installing composite and noncomposite insulation in two or more layers, install noncomposite board insulation for bottom layer and intermediate layers, if applicable, and install composite board insulation for top layer.
- D. Mechanically Fastened Insulation: Install each layer of insulation and secure to deck using mechanical fasteners specifically designed and sized for fastening specified board-type roof insulation to deck type.
 - 1. Fasten insulation to resist uplift pressure at corners, perimeter, and field of roof.
- E. Mechanically Fastened and Adhered Insulation: Install first layer of insulation to deck using mechanical fasteners specifically designed and sized for fastening specified board-type roof insulation to deck type.
 - 1. Fasten first layer of insulation to resist uplift pressure at corners, perimeter, and field of roof.

- 2. Set each subsequent layer of insulation in a solid mopping of hot roofing asphalt, applied within plus or minus 25 deg F of equiviscous temperature.
- 3. Set each subsequent layer of insulation in insulation adhesive, firmly pressing and maintaining insulation in place.

3.3 ADHERED MEMBRANE ROOFING INSTALLATION

- A. Adhere roofing over area to receive roofing according to membrane roofing system manufacturer's written instructions. Unroll membrane roofing and allow to relax before installing.
- B. Accurately align roofing, and maintain uniform side and end laps of minimum dimensions required by manufacturer. Stagger end laps.
- C. Bonding Adhesive: Apply to substrate and underside of roofing at rate required by manufacturer, and allow to partially dry before installing roofing. Do not apply to splice area of roofing.
- D. In addition to adhering, mechanically fasten roofing securely at terminations, penetrations, and perimeters.
- E. Adhesive Seam Installation: Clean both faces of splice areas, apply splicing cement, and firmly roll side and end laps of overlapping roofing according to manufacturer's written instructions to ensure a watertight seam installation. Apply lap sealant and seal exposed edges of roofing terminations.
 - 1. Apply a continuous bead of in-seam sealant before closing splice if required by roofing system manufacturer.
- F. Tape Seam Installation: Clean and prime both faces of splice areas, apply splice tape, and firmly roll side and end laps of overlapping roofing according to manufacturer's written instructions to ensure a watertight seam installation. Apply lap sealant and seal exposed edges of roofing terminations.
- G. Repair tears, voids, and lapped seams in roofing that do not comply with requirements.
- H. Spread sealant or mastic bed over deck-drain flange at roof drains, and securely seal membrane roofing in place with clamping ring.

3.4 BASE FLASHING INSTALLATION

- A. Install sheet flashings and preformed flashing accessories, and adhere to substrates according to roofing system manufacturer's written instructions.
- B. Apply bonding adhesive to substrate and underside of sheet flashing at required rate, and allow to partially dry. Do not apply to seam area of flashing.

- C. Flash penetrations and field-formed inside and outside corners with cured or uncured sheet flashing.
- D. Clean splice areas, apply splicing cement, and firmly roll side and end laps of overlapping sheets to ensure a watertight seam installation. Apply lap sealant and seal exposed edges of sheet flashing terminations.
- E. Terminate and seal top of sheet flashings and mechanically anchor to substrate through termination bars.

3.5 WALKWAY INSTALLATION

- A. Flexible Walkways: Install walkway products in locations indicated. Adhere walkway products to substrate with compatible adhesive according to roofing system manufacturer's written instructions.
- B. Roof-Paver Walkways: Install walkway roof pavers according to manufacturer's written instructions in locations indicated, to form walkways. Leave 3 inches of space between adjacent roof pavers.

3.6 PROTECTING AND CLEANING

- A. Protect membrane roofing system from damage and wear during remainder of construction period. When remaining construction does not affect or endanger roofing, inspect roofing for deterioration and damage, describing its nature and extent in a written report, with copies to Architect and Owner.
- B. Correct deficiencies in or remove membrane roofing system that does not comply with requirements, repair substrates, and repair or reinstall membrane roofing system to a condition free of damage and deterioration at time of Substantial Completion and according to warranty requirements.
- C. Clean overspray and spillage from adjacent construction using cleaning agents and procedures recommended by manufacturer of affected construction.

END OF SECTION 07 53 23

SECTION 07 62 00 - SHEET METAL FLASHING AND TRIM

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Formed low-slope roof sheet metal fabrications.
 - 2. Formed wall sheet metal fabrications.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For sheet metal flashing and trim.
 - 1. Include plans, elevations, sections, and attachment details.
 - 2. Distinguish between shop- and field-assembled work.
 - 3. Include identification of finish for each item.
 - 4. Include pattern of seams and details of termination points, expansion joints and expansion-joint covers, direction of expansion, roof-penetration flashing, and connections to adjoining work.
- C. Samples: For each exposed product and for each color and texture specified.

1.3 CLOSEOUT SUBMITTALS

A. Maintenance data.

1.4 QUALITY ASSURANCE

A. Fabricator Qualifications: Employs skilled workers who custom fabricate sheet metal flashing and trim similar to that required for this Project and whose products have a record of successful in-service performance.

1.5 WARRANTY

- A. Special Warranty on Finishes: Manufacturer agrees to repair finish or replace sheet metal flashing and trim that shows evidence of deterioration of factory-applied finishes within specified warranty period.
 - 1. Finish Warranty Period: 20 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. General: Sheet metal flashing and trim assemblies shall withstand wind loads, structural movement, thermally induced movement, and exposure to weather without failure due to defective manufacture, fabrication, installation, or other defects in construction. Completed sheet metal flashing and trim shall not rattle, leak, or loosen, and shall remain watertight.
- B. Sheet Metal Standard for Flashing and Trim: Comply with NRCA's "The NRCA Roofing Manual" and SMACNA's "Architectural Sheet Metal Manual" requirements for dimensions and profiles shown unless more stringent requirements are indicated.
- C. SPRI Wind Design Standard: Manufacture and install roof edge flashings tested according to SPRI ES-1 and capable of resisting the following design pressure:
 - 1. Design Pressure: As indicated on Drawings.
- D. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 - 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.2 SHEET METALS

- A. General: Protect mechanical and other finishes on exposed surfaces from damage by applying strippable, temporary protective film before shipping.
- B. Aluminum Sheet: ASTM B 209, alloy as standard with manufacturer for finish required, with temper as required to suit forming operations and performance required.
 - 1. Exposed Coil-Coated Finish:
 - a. Two-Coat Fluoropolymer: AAMA2605. Fluoropolymer finish containing not less than 70 percent PVDF resin by weight in color coat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.
 - 2. Color: As selected by Architect from manufacturer's full range.

2.3 UNDERLAYMENT MATERIALS

2.4 MISCELLANEOUS MATERIALS

- A. General: Provide materials and types of fasteners, solder, protective coatings, sealants, and other miscellaneous items as required for complete sheet metal flashing and trim installation and as recommended by manufacturer of primary sheet metal or manufactured item unless otherwise indicated.
- B. Fasteners: Wood screws, annular threaded nails, self-tapping screws, self-locking rivets and bolts, and other suitable fasteners designed to withstand design loads and recommended by manufacturer of primary sheet metal.
 - 1. General: Blind fasteners or self-drilling screws, gasketed, with hex-washer head.
 - a. Exposed Fasteners: Heads matching color of sheet metal using plastic caps or factory-applied coating. Provide metal-backed EPDM or PVC sealing washers under heads of exposed fasteners bearing on weather side of metal.
 - b. Blind Fasteners: High-strength aluminum or stainless-steel rivets suitable for metal being fastened.
 - 2. Fasteners for Aluminum Sheet: Aluminum or Series 300 stainless steel.
- C. Solder compositions with maximum lead content of 0.2 percent may be less preferred and are usually more expensive but are considered to be "lead free" by ASTM B 32; verify, with sheet metal manufacturer, the acceptability of low-lead-content solder before retaining.:
- D. Sealant Tape: Pressure-sensitive, 100 percent solids, polyisobutylene compound sealant tape with release-paper backing. Provide permanently elastic, nonsag, nontoxic, nonstaining tape 1/2 inch wide and 1/8 inch thick.
- E. Elastomeric Sealant: ASTM C 920, elastomeric polyurethane polysulfide silicone polymer sealant; of type, grade, class, and use classifications required to seal joints in sheet metal flashing and trim and remain watertight.
- F. Butyl Sealant: ASTM C 1311, single-component, solvent-release butyl rubber sealant; polyisobutylene plasticized; heavy bodied for hooked-type expansion joints with limited movement.
- G. Epoxy Seam Sealer: Two-part, noncorrosive, aluminum seam-cementing compound, recommended by aluminum manufacturer for exterior nonmoving joints, including riveted joints.
- H. Bituminous Coating: Cold-applied asphalt emulsion according to ASTM D 1187.

2.5 FABRICATION, GENERAL

- A. General: Custom fabricate sheet metal flashing and trim to comply with details shown and recommendations in cited sheet metal standard that apply to design, dimensions, geometry, metal thickness, and other characteristics of item required. Fabricate sheet metal flashing and trim in shop to greatest extent possible.
 - 1. Obtain field measurements for accurate fit before shop fabrication.
 - 2. Form sheet metal flashing and trim to fit substrates without excessive oil canning, buckling, and tool marks; true to line, levels, and slopes; and with exposed edges folded back to form hems.
 - 3. Conceal fasteners and expansion provisions where possible. Do not use exposed fasteners on faces exposed to view.
- B. Expansion Provisions: Form metal for thermal expansion of exposed flashing and trim.
 - 1. Form expansion joints of intermeshing hooked flanges, not less than 1 inch deep, filled with butyl sealant concealed within joints.
 - 2. Use lapped expansion joints only where indicated on Drawings.
- C. Sealant Joints: Where movable, nonexpansion-type joints are required, form metal to provide for proper installation of elastomeric sealant according to cited sheet metal standard.
- D. Fabricate cleats and attachment devices from same material as accessory being anchored or from compatible, noncorrosive metal.
- E. Fabricate cleats and attachment devices of sizes as recommended by cited sheet metal standard for application, but not less than thickness of metal being secured.
- F. Seams for Aluminum: Fabricate nonmoving seams with flat-lock seams. Form seams and seal with epoxy seam sealer. Rivet joints where necessary for strength.

2.6 LOW-SLOPE ROOF SHEET METAL FABRICATIONS

- A. Roof Edge Flashing (Gravel Stop): Fabricate in minimum 96-inch- long, but not exceeding 12-foot- long sections. Furnish with 6-inch- wide, joint cover plates. Shop fabricate interior and exterior corners.
 - 1. Fabricate from the Following Materials:
 - a. Aluminum: 0.050 inch thick.
- B. Base Flashing: Shop fabricate interior and exterior corners. Fabricate from the following materials:
 - 1. Aluminum: 0.040 inch thick.

- C. Counterflashing and Flashing Receivers: Fabricate from the following materials:
 - 1. Aluminum: 0.032 inch thick.
- D. Roof-Penetration Flashing: Fabricate from the following materials:
 - 1. Galvanized Steel: 0.028 inch thick.
- E. Roof-Drain Flashing: Fabricate from the following materials:
 - 1. Stainless Steel: 0.016 inch thick.

2.7 WALL SHEET METAL FABRICATIONS

- A. Through-Wall Flashing: Fabricate continuous flashings in minimum 96-inch- long, but not exceeding 12-foot- long, sections, under copings, and at shelf angles. Fabricate discontinuous lintel, sill, and similar flashings to extend 6 inches beyond each side of wall openings; and form with 2-inch- high, end dams. Fabricate from the following materials:
 - 1. Copper: 16 oz./sq. ft..

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. General: Anchor sheet metal flashing and trim and other components of the Work securely in place, with provisions for thermal and structural movement. Use fasteners, solder, protective coatings, separators, sealants, and other miscellaneous items as required to complete sheet metal flashing and trim system.
 - 1. Install sheet metal flashing and trim true to line, levels, and slopes. Provide uniform, neat seams with minimum exposure of solder, welds, and sealant.
 - 2. Install sheet metal flashing and trim to fit substrates and to result in watertight performance. Verify shapes and dimensions of surfaces to be covered before fabricating sheet metal.
 - 3. Space cleats not more than 12 inches apart. Attach each cleat with at least two fasteners. Bend tabs over fasteners.
 - 4. Install exposed sheet metal flashing and trim with limited oil canning, and free of buckling and tool marks.
 - 5. Torch cutting of sheet metal flashing and trim is not permitted.
- B. Metal Protection: Where dissimilar metals contact each other, or where metal contacts pressure-treated wood or other corrosive substrates, protect against galvanic action or corrosion by painting contact surfaces with bituminous coating or by other permanent separation as recommended by sheet metal manufacturer or cited sheet metal standard.

- 1. Coat concealed side of sheet metal flashing and trim with bituminous coating where flashing and trim contact wood, ferrous metal, or cementitious construction.
- 2. Underlayment: Where installing sheet metal flashing and trim directly on cementitious or wood substrates, install underlayment and cover with slip sheet.
- C. Expansion Provisions: Provide for thermal expansion of exposed flashing and trim. Space movement joints at maximum of 10 feet with no joints within 24 inches of corner or intersection.
 - 1. Form expansion joints of intermeshing hooked flanges, not less than 1 inch deep, filled with sealant concealed within joints.
 - 2. Use lapped expansion joints only where indicated on Drawings.
- D. Fasteners: Use fastener sizes that penetrate substrate not less than recommended by fastener manufacturer to achieve maximum pull-out resistance.
- E. Conceal fasteners and expansion provisions where possible in exposed work and locate to minimize possibility of leakage. Cover and seal fasteners and anchors as required for a tight installation.
- F. Seal joints as required for watertight construction. Prepare joints and apply sealants to comply with requirements in Section 07 92 00 "Joint Sealants."
- G. Soldered Joints: Clean surfaces to be soldered, removing oils and foreign matter. Pre-tin edges of sheets with solder to width of 1-1/2 inches; however, reduce pre-tinning where pre-tinned surface would show in completed Work.
- H. Rivets: Rivet joints in uncoated aluminum where necessary for strength.

3.2 ROOF-DRAINAGE SYSTEM INSTALLATION

A. General: Install sheet metal roof-drainage items to produce complete roof-drainage system according to cited sheet metal standard unless otherwise indicated. Coordinate installation of roof perimeter flashing with installation of roof-drainage system.

3.3 ROOF FLASHING INSTALLATION

- A. General: Install sheet metal flashing and trim to comply with performance requirements and cited sheet metal standard. Provide concealed fasteners where possible, and set units true to line, levels, and slopes. Install work with laps, joints, and seams that are permanently watertight and weather resistant.
- B. Roof Edge Flashing: Anchor to resist uplift and outward forces according to recommendations in cited sheet metal standard unless otherwise indicated. Interlock bottom edge of roof edge flashing with continuous cleat anchored to substrate.

C. Counterflashing: Coordinate installation of counterflashing with installation of base flashing. Insert counterflashing in reglets or receivers and fit tightly to base flashing. Extend counterflashing 4 inches over base flashing. Lap counterflashing joints minimum of 4 inches.

3.4 WALL FLASHING INSTALLATION

- A. General: Install sheet metal wall flashing to intercept and exclude penetrating moisture according to cited sheet metal standard unless otherwise indicated. Coordinate installation of wall flashing with installation of wall-opening components such as windows, doors, and louvers.
- B. Through-Wall Flashing: Installation of through-wall flashing is specified in Section 04 20 00 "Unit Masonry." Section 04 42 00 "Exterior Stone Cladding."
- C. Reglets: Installation of reglets is specified in Section 06 20 13 "Exterior Finish Carpentry"
- D. Opening Flashings in Frame Construction: Install continuous head, sill, jamb, and similar flashings to extend 4 inches beyond wall openings.

3.5 CLEANING AND PROTECTION

- A. Clean exposed metal surfaces of substances that interfere with uniform oxidation and weathering.
- B. Clean and neutralize flux materials. Clean off excess solder.
- C. Clean off excess sealants.
- D. Remove temporary protective coverings and strippable films as sheet metal flashing and trim are installed unless otherwise indicated in manufacturer's written installation instructions.

END OF SECTION 07 62 00

SECTION 07 71 00 - ROOF SPECIALTIES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Copings.
 - 2. Roof-edge specialties.
 - 3. Roof-edge drainage systems.
 - 4. Reglets and counterflashings.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples: For each type of roof specialty and for each color and texture specified.

1.3 CLOSEOUT SUBMITTALS

A. Maintenance Data: For roofing specialties to include in maintenance manuals.

1.4 QUALITY ASSURANCE

A. Manufacturer Qualifications: A qualified manufacturer offering products meeting requirements that are FM Approvals listed for specified class and SPRI ES-1 tested to specified design pressure.

1.5 WARRANTY

- A. Special Warranty on Painted Finishes: Manufacturer agrees to repair finish or replace roof specialties that show evidence of deterioration of factory-applied finishes within specified warranty period.
 - 1. Finish Warranty Period: 20 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes to prevent buckling, opening of joints, hole elongation, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Provide clips that resist rotation and avoid shear stress as a result of thermal movements. Base calculations on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.

2.2 COPINGS

- A. Metal Copings: Manufactured coping system consisting of metal coping cap in section lengths not exceeding 12 feet Insert dimension, concealed anchorage; with corner units, end cap units, and concealed splice plates with finish matching coping caps.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Architectural Products Company.
 - b. ATAS International, Inc.
 - c. Berridge Manufacturing Company.
 - d. Castle Metal Products.
 - e. Cheney Flashing Company.
 - f. Drexel Metals.
 - g. Exceptional Metals.
 - h. Hickman Company, W. P.
 - i. Merchant and Evans.
 - j. Metal-Era, Inc.
 - k. PAC-CLAD; Petersen Aluminum Corporation.
 - 1. Perimeter Systems; a division of SAF.
 - m. SAF (Southern Aluminum Finishing Company, Inc.).
 - n.
 - 2. Metallic-Coated Steel Sheet Coping Caps: Zinc-coated (galvanized) steel, nominal 0.034-inch thickness thickness as required to meet performance requirements.
 - a. Surface: Smooth, flat finish.
 - b. Finish: Two-coat fluoropolymer.
 - c. Color: As selected by Architect from manufacturer's full range.
 - 3. Formed Aluminum Sheet Coping Caps: Aluminum sheet, 0.050 inch thick thickness as required to meet performance requirements.
 - a. Surface: Smooth, flat finish.

- b. Finish: Two-coat fluoropolymer.
- c. Color: As selected by Architect from manufacturer's full range.
- 4. Corners: Factory mitered and mechanically clinched and sealed watertight.
- 5. Coping-Cap Attachment Method: Snap-on or face leg hooked to continuous cleat with back leg fastener exposed, fabricated from coping-cap material.
 - a. Snap-on Coping Anchor Plates: Concealed, galvanized-steel sheet, 12 inches wide, with integral cleats.
 - b. Face-Leg Cleats: Concealed, continuous galvanized-steel sheet stainless steel.

2.3 ROOF-EDGE SPECIALTIES

- A. Roof-Edge Fascia: Manufactured, two-piece, roof-edge fascia consisting of snap-on metal fascia cover in section lengths not exceeding 12 feet Insert dimension and a continuous metal receiver with integral drip-edge cleat to engage fascia cover and secure single-ply roof membrane. Provide matching corner units.
 - 1. Manufacturers: Subject to compliance with requirements, Basis-of-Design "OMG Roofing Terminedge Fascia" or provide products by one of the following:
 - a. Berridge Manufacturing Company.
 - b. Drexel Metals.
 - c. Exceptional Metals.
 - d. Hickman Company, W. P.
 - e. Metal-Era, Inc.
 - f. Perimeter Systems; a division of SAF.
 - g.
 - 2. Formed Aluminum Sheet Fascia Covers: Aluminum sheet, 0.063 inch thick.
 - a. Surface: Smooth, flat finish.
 - b. Finish: Two-coat fluoropolymer.
 - c. Color: As selected by Architect from manufacturer's full range.
 - 3. Corners: Factory mitered and mechanically clinched and sealed watertight.
 - 4. Splice Plates: Concealed, of same material, finish, and shape as fascia cover.
 - 5. Receiver: Manufacturer's standard material and thickness.
 - 6. Fascia Accessories: Fascia extenders with continuous hold-down cleats Wall cap Soffit trim Overflow scuppers Spillout scuppers Downspout scuppers with integral conductor head and downspout adapters.

2.4 ROOF-EDGE DRAINAGE SYSTEMS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Architectural Products Company.

- 2. ATAS International, Inc.
- 3. Berger Building Products, Inc.
- 4. Castle Metal Products.
- 5. Cheney Flashing Company.
- 6. CopperCraft by FABRAL.
- 7. Drexel Metals.
- 8. Exceptional Metals.
- 9. Hickman Company, W. P.
- 10. Merchant and Evans.
- 11. Metal-Era, Inc.
- 12. Perimeter Systems; a division of SAF.
- 13. SAF (Southern Aluminum Finishing Company, Inc.).
- B. Gutters: Manufactured in uniform section lengths not exceeding 12 feet Insert dimension, with matching corner units, ends, outlet tubes, and other accessories. Elevate back edge at least 1 inch above front edge. Furnish flat-stock gutter straps, gutter brackets, expansion joints, and expansion-joint covers fabricated from same metal as gutters.
 - 1. Aluminum Sheet: 0.063 inch thick.
 - 2. Gutter Profile: Style A according to SMACNA's "Architectural Sheet Metal Manual."
 - 3. Corners: Factory mitered and soldered.
 - 4. Gutter Supports: Manufacturer's standard supports as selected by Architect with finish matching the gutters.
- C. Downspouts: Plain rectangular complete with mitered elbows, manufactured from the following exposed metal. Furnish with metal hangers, from same material as downspouts, and anchors.
 - 1. Formed Aluminum: 0.063 inch thick.

2.5 REGLETS AND COUNTERFLASHINGS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Berridge Manufacturing Company.
 - 2. Castle Metal Products.
 - 3. Cheney Flashing Company.
 - 4. Drexel Metals.
 - 5. Exceptional Metals.
 - 6. Fry Reglet Corporation.
 - 7. Heckmann Building Products, Inc.
 - 8. Hickman Company, W. P.
 - 9. Keystone Flashing Company, Inc.
 - 10. Metal-Era, Inc.
- B. Reglets: Manufactured units formed to provide secure interlocking of separate reglet and counterflashing pieces, from the following exposed metal:

- 1. Zinc-Coated Steel: Nominal 0.022-inch 0.028-inch Insert value thickness.
- 2. Formed Aluminum: 0.024 inch 0.050 inch Insert value thick.
- 3. Stainless Steel: 0.0188 inch 0.0250 inch Insert value thick.
- 4. Copper: 16 oz./sq. ft. Insert weight.
- 5. Corners: Factory mitered and soldered continuously welded mechanically clinched and sealed watertight.
- 6. Surface-Mounted Type: Provide reglets with slotted holes for fastening to substrate, with neoprene or other suitable weatherproofing washers, and with channel for sealant at top edge.
- 7. Stucco Type, Embedded: Provide reglets with upturned fastening flange and extension leg of length to match thickness of applied finish materials.
- 8. Concrete Type, Embedded: Provide temporary closure tape to keep reglet free of concrete materials, special fasteners for attaching reglet to concrete forms, and guides to ensure alignment of reglet section ends.
- 9. Masonry Type, Embedded: Provide reglets with offset top flange for embedment in masonry mortar joint.
- 10. Multiuse Type, Embedded: For multiuse embedment in cast-in-place concrete masonry mortar joints.
- C. Counterflashings: Manufactured units of heights to overlap top edges of base flashings by 4 inches and in lengths not exceeding 12 feet Insert dimension designed to snap into reglets through-wall-flashing receiver and compress against base flashings with joints lapped, from the following exposed metal:
 - 1. Zinc-Coated Steel: Nominal 0.022-inch 0.028-inch Insert value thickness.
 - 2. Formed Aluminum: 0.024 inch 0.032 inch Insert value thick.
 - 3. Stainless Steel: 0.0188 inch 0.0250 inch Insert value thick.
 - 4. Copper: 16 oz./sq. ft. Insert weight.
- D. Accessories:
 - 1. Flexible-Flashing Retainer: Provide resilient plastic or rubber accessory to secure flexible flashing in reglet where clearance does not permit use of standard metal counterflashing or where reglet is provided separate from metal counterflashing.
 - 2. Counterflashing Wind-Restraint Clips: Provide clips to be installed before counterflashing to prevent wind uplift of counterflashing lower edge.
- E. Zinc-Coated Steel Finish: Two-coat fluoropolymer.
 - 1. Color: As selected by Architect from manufacturer's full range.
- F. Aluminum Finish: Two-coat fluoropolymer Color anodic.
 - 1. Color: As selected by Architect from manufacturer's full range.
- G. Stainless Steel Finish: ASTM A480/A480M No. 3 (coarse, polished directional satin).
- H. Copper Finish: Non-patinated, mill.

2.6 MATERIALS

- A. Zinc-Coated (Galvanized) Steel Sheet: ASTM A653/A653M, G90 coating designation.
- B. Aluminum Sheet: ASTM B209, alloy as standard with manufacturer for finish required, with temper to suit forming operations and performance required.
- C. Stainless Steel Sheet: ASTM A240/A240M or ASTM A666, Type 304.
- D. Copper Sheet: ASTM B370, cold-rolled copper sheet, H00 or H01 temper.

2.7 MISCELLANEOUS MATERIALS

- A. Fasteners: Manufacturer's recommended fasteners, suitable for application and designed to meet performance requirements. Furnish the following unless otherwise indicated:
 - 1. Fasteners for Aluminum: Aluminum or Series 300 stainless steel.
- B. Elastomeric Sealant: ASTM C920, elastomeric polyurethane silicone polymer sealant of type, grade, class, and use classifications required by roofing-specialty manufacturer for each application.
- C. Butyl Sealant: ASTM C1311, single-component, solvent-release butyl rubber sealant; polyisobutylene plasticized; heavy bodied for hooked-type joints with limited movement.
- D. Bituminous Coating: Cold-applied asphalt emulsion complying with ASTM D1187/D1187M.

2.8 FINISHES

- A. Coil-Coated Aluminum Sheet Finishes:
 - 1. Color Anodic Finish: AAMA 611, AA-M12C22A42/A44, Class I, 0.018 mm or thicker.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Install roof specialties according to manufacturer's written instructions. Anchor roof specialties securely in place, with provisions for thermal and structural movement. Use fasteners, solder, protective coatings, separators, underlayments, sealants, and other miscellaneous items as required to complete roof-specialty systems.
 - 1. Install roof specialties level, plumb, true to line and elevation; with limited oil-canning and without warping, jogs in alignment, buckling, or tool marks.
 - 2. Provide uniform, neat seams with minimum exposure of solder and sealant.

- 3. Install roof specialties to fit substrates and to result in weathertight performance. Verify shapes and dimensions of surfaces to be covered before manufacture.
- 4. Torch cutting of roof specialties is not permitted.
- 5. Do not use graphite pencils to mark metal surfaces.
- B. Metal Protection: Protect metals against galvanic action by separating dissimilar metals from contact with each other or with corrosive substrates by painting contact surfaces with bituminous coating or by other permanent separation as recommended by manufacturer.
 - 1. Coat concealed side of uncoated aluminum roof specialties with bituminous coating where in contact with wood, ferrous metal, or cementitious construction.
 - 2. Bed flanges in thick coat of asphalt roofing cement where required by manufacturers of roof specialties for waterproof performance.
- C. Expansion Provisions: Allow for thermal expansion of exposed roof specialties.
 - 1. Space movement joints at a maximum of 12 feet with no joints within 18 inches of corners or intersections unless otherwise indicated on Drawings.
 - 2. When ambient temperature at time of installation is between 40 and 70 deg F, set joint members for 50 percent movement each way. Adjust setting proportionately for installation at higher ambient temperatures.
- D. Fastener Sizes: Use fasteners of sizes that penetrate wood blocking or sheathing not less than 1-1/4 inches for nails and not less than 3/4 inch for wood screws.
- E. Seal concealed joints with butyl sealant as required by roofing-specialty manufacturer.
- F. Seal joints as required for weathertight construction. Place sealant to be completely concealed in joint. Do not install sealants at temperatures below 40 deg F.
- G. Soldered Joints: Clean surfaces to be soldered, removing oils and foreign matter. Pre-tin edges of sheets to be soldered to a width of 1-1/2 inches; however, reduce pre-tinning where pre-tinned surface would show in completed Work. Tin edges of uncoated copper sheets using solder for copper. Do not use torches for soldering. Heat surfaces to receive solder and flow solder into joint. Fill joint completely. Completely remove flux and spatter from exposed surfaces.

3.2 INSTALLATION OF COPING

- A. Install cleats, anchor plates, and other anchoring and attachment accessories and devices with concealed fasteners.
- B. Anchor copings with manufacturer's required devices, fasteners, and fastener spacing to meet performance requirements.
 - 1. Interlock face and back leg drip edges of snap-on coping cap into cleated anchor plates anchored to substrate at manufacturer's required spacing that meets performance requirements.

2. Interlock face-leg drip edge into continuous cleat anchored to substrate at manufacturer's required spacing that meets performance requirements. Anchor back leg of coping with screw fasteners and elastomeric washers at manufacturer's required spacing that meets performance requirements.

3.3 INSTALLATION OF ROOF-EDGE SPECIALITIES

- A. Install cleats, cants, and other anchoring and attachment accessories and devices with concealed fasteners.
- B. Anchor roof edgings with manufacturer's required devices, fasteners, and fastener spacing to meet performance requirements.

3.4 INSTALLATION OF ROOF-EDGE DRAINAGE-SYSTEM

- A. Install components to produce a complete roof-edge drainage system according to manufacturer's written instructions. Coordinate installation of roof perimeter flashing with installation of roof-edge drainage system.
- B. Gutters: Join and seal gutter lengths. Allow for thermal expansion. Attach gutters to firmly anchored gutter supports spaced not more than 24 inches apart. Attach ends with rivets and solder to make watertight. Slope to downspouts.
 - 1. Install gutter with expansion joints at locations indicated but not exceeding 50 feet apart. Install expansion-joint caps.
 - 2. Install continuous leaf guards on gutters with noncorrosive fasteners, removable for cleaning gutters.
- C. Downspouts: Join sections with manufacturer's standard telescoping joints. Provide hangers with fasteners designed to hold downspouts securely to walls and 1 inch away from walls; locate fasteners at top and bottom and at approximately 60 inches o.c.
 - 1. Connect downspouts to underground drainage system indicated.
- D. Parapet Scuppers: Install scuppers through parapet where indicated. Continuously support scupper, set to correct elevation, and seal flanges to interior wall face, over cants or tapered edge strips, and under roofing membrane.

3.5 INSTALLATION OF REGLETS AND COUNTERFLASHINGS

- A. Surface-Mounted Reglets: Install reglets to receive flashings where flashing without embedded reglets is indicated on Drawings. Install at height so that inserted counterflashings overlap 4 inches over top edge of base flashings.
- B. Counterflashings: Insert counterflashings into reglets or other indicated receivers; ensure that counterflashings overlap 4 inches over top edge of base flashings. Lap counterflashing joints a minimum of 4 inches and bed with butyl sealant. Fit counterflashings tightly to base flashings.

3.6 CLEANING AND PROTECTION

- A. Clean exposed metal surfaces of substances that interfere with uniform oxidation and weathering.
- B. Clean and neutralize flux materials. Clean off excess solder and sealants.
- C. Remove temporary protective coverings and strippable films as roof specialties are installed.

END OF SECTION 07 71 00

SECTION 07 72 30 - RIDGE, SOFFIT AND SIDING VENTS

PART 1 GENERAL

- 1.1 SECTION INCLUDES
 - A. Ridge vents.
 - B. Soffit vents.
 - C. Siding vents.

1.2 RELATED SECTIONS

- A. Section 074113.16 Standing-Seam Metal Roof Panels
- B. Section 074213.13 Formed Metal Wall Panels
- C. Section 074646 Fiber Cement Siding

1.3 SUBMITTALS

- A. Product Data: For each product type.
- B. Samples: For each type of vent product indicated.

PART 2 PRODUCTS

2.1 MANUFACTURER

A. Manufacturer: Basis-of-Design Cor-A-Vent, Inc.; P.O. Box 428; Mishawaka, IN 46546-0428. ASD. Tel: (800) 837-8368. Fax: (800) 645-6162.

2.2 MATERIALS

- A. Ridge Vents General: Manufactured of corrosion-free, extruded, high-density polypropylene. Ridge Vents with an "E" in name have enhanced snow screen. Roof-2-Wall Vents have an Active Weather Foil.
- B. Ridge Vents: Cor-A-Vent V-600/T & V-600/TE Ridge Vent.
 - 1. Net free area: 20 sq in per lin ft (42336 sq mm/m).
 - 2. Color: Black.
 - Dimensions: 3-1/2 inches (89 mm) wide by 48 inches (1220 mm) long by 1 inch (25 mm) high.
- C. Soffit Vents General: Manufactured of corrosion-free, extruded, high-density polypropylene.
- D. Soffit Vents: Cor-A-Vent S-400 Strip Vent.
 - 1. Net free area: 10 sq in per lin ft (21168 sq mm/m).
 - Dimensions: 1 inch (25 mm) wide by 48 inches (1220 mm) long by 1 1/2 inch (38 mm) high.
 - 3. Color: Black.

- E. Soffit Vents: Cor-A-Vent PS-400 Strip Vent.
 - 1. Net free area: 10 sq in per lin ft (21168 sq mm/m).
 - Dimensions: 1 inch (25 mm) wide by 48 inches (1220 mm) long by 3/4 inch (19 mm) high.
 - 3. Color: Black.
- F. Siding Vents: SV-3.
 - 1. Dimensions: 3/8 inches (9.65mm) wide by 48 inches (1220 mm) long by 3 inch (75 mm) high.
 - 2. Color: Black.
- G. Siding Vents: SS-112 Sturdi Strips.
 - 1. Dimensions: 3/8 inches (9.65mm) depth by 1-1/2 inches (38 mm) wide by 48 inches (1220) long.
 - 2. Color: Black.
- H. Siding Starter Strip: ST-30 Sturdi Starter.
 - 1. Dimensions: 5/16 inches (7.87mm) wide by 1 1/4 inches (31.75 mm) tall by 48 inches (1220) long.
 - 2. Color: Black.

PART 3 EXECUTION

- 3.1 EXAMINATION
 - A. Verify that framing, sheathing, and shingles are secured and ready to receive vents.
 - B. Verify that there is a 1 inch (25 mm) wide clear air space between sheathing and each side of ridge board or, if trusses are used, a 1-1/2 inches (40 mm) wide continuous clear air space centered on ridge.
- 3.2 INSTALLATION
 - A. General:
 - 1. Install ridge vents along entire length of roof ridges.
 - 2. Install soffit vents along entire length of soffits.
 - 3. Install Roof-2-Wall vent along entire length of intersection of vertical walls.
 - B. Ridge Vents:
 - 1. Fit end cap onto one end of the first and last piece of ridge vent.
 - 2. Lay a bead of calking on the underside of the end cap, press the piece and cap into position, and nail through the end cap, the ridge vent, and into the roof sheathing.
 - 3. Use roofing nails that are long enough to penetrate ridge vent and through roof sheathing.
 - 4. Drive the nails down flush so that the vent and end cap are held down firmly.
 - 5. Do not indent by over driving.
 - 6. Butt each successive piece up snugly, checking for straight alignment.
 - 7. Use 2 nails in each end and 1 at each side at center, pulling up slightly when nailing second side to ensure that the vent is nailed at the same pitch as the roof.
 - 8. If roof shingles are the heavy dimensional type, a bead of sealant must be applied on top of the shingles to provide weather seal between the shingles and vent.
 - C. Steep Pitch and Wide Ridge Beam Applications:1. Cut ridge vents into 2 half pieces lengthwise.

- 2. Nail half pieces over shingles on either side of the ridge slot.
- 3. Fasten metal flashing over ridge vent.
- 4. Cut oversize shingle ridge caps or lap 12 inch (305 mm) long shingles, and install as specified.
- D. Roof to Wall: Install continuous Roof-2-Wall vents full length of intersections of roof with vertical walls in accordance with drawings.
- E. Metal Roofing: Install ridge and soffit vents as specified by manufacturer and in accordance with drawings.
- F. Flashings: Install specified flashings where indicated on the drawings.

3.3 SOFFIT VENTS

- A. Install continuous vents full length of soffits, unless otherwise indicated.
- B. Ensure that adequate blocking or barriers are installed to prevent insulation from impeding air flow.

3.4 SIDING VENTS

- A. Nail SV-3 or SV-5 in a continuous band along the wall at the level where the siding will start. A continuous band of SV-3 or SV-5 may also be nailed at the top of the wall where the siding ends if full ventilation behind the siding is desired. SV-3 and SV-5 may also be used above and below windows and above doors to provide drainage/ventilation in these areas as well.
- B. If SS-112 Sturdi Strips are being used with the SV-3 they should be nailed to the wall either at 16 inches (406 mm) OC or 24 inches (610 mm) OC, depending on the stud layout of the wall and alongside all windows and doors. Note the SS-112 are a spacer and are not designed to hold the weight of the siding, the siding must be fastened through the SS-112 Sturdi Strips into structural material behind them. Typically when the SV-5 is being used a 3/4 inch (19 mm) thick furring strip is used instead of the SS-112 Sturdi Strips, but they can be doubled up and used if desired. The fastener for the siding must be long enough to go through both layers and attach to structural material behind them.
- C. The ST-30 Sturdi Starter is used instead of ripping a piece of siding to place behind the bottom of the first row. The ST-30 will provide the same angle as the ripped siding to the first row of siding.

3.5 ADJUST AND CLEAN

A. Remove any scrap from the site, and leave in a neat and clean condition.

END OF SECTION

SECTION 07 84 13 - PENETRATION FIRESTOPPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Penetrations in fire-resistance-rated walls.
 - 2. Penetrations in horizontal assemblies.

1.2 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Product Schedule: For each penetration firestopping system. Include location and design designation of qualified testing and inspecting agency.
 - 1. Where Project conditions require modification to a qualified testing and inspecting agency's illustration for a particular penetration firestopping condition, submit illustration, with modifications marked, approved by penetration firestopping manufacturer's fire-protection engineer as an engineering judgment or equivalent fire-resistance-rated assembly.
- C. Installer Certificates: From Installer indicating penetration firestopping has been installed in compliance with requirements and manufacturer's written recommendations.
- D. Product test reports.

1.3 QUALITY ASSURANCE

- A. Installer Qualifications: A firm that has been approved by FM Global according to FM Global 4991, "Approval of Firestop Contractors," or been evaluated by UL and found to comply with its "Qualified Firestop Contractor Program Requirements."
- B. Fire-Test-Response Characteristics: Penetration firestopping shall comply with the following requirements:
 - 1. Penetration firestopping tests are performed by UL.
 - 2. Penetration firestopping is identical to those tested per testing standard referenced in "Penetration Firestopping" Article. Provide rated systems bearing marking of qualified testing and inspection agency.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. A/D Fire Protection Systems Inc.
 - 2. Grace Construction Products.
 - 3. Specified Technologies Inc.
 - 4. 3M Fire Protection Products.
 - 5. Tremco, Inc.; Tremco Fire Protection Systems Group.
 - 6. USG Corporation.

2.2 PENETRATION FIRESTOPPING

- A. Provide penetration firestopping that is produced and installed to resist spread of fire according to requirements indicated, resist passage of smoke and other gases, and maintain original fire-resistance rating of construction penetrated. Penetration firestopping systems shall be compatible with one another, with the substrates forming openings, and with penetrating items if any.
- B. Penetrations in Fire-Resistance-Rated Walls: Ratings determined per ASTM E 814 or UL 1479, based on testing at a positive pressure differential of 0.01-inch wg.
 - 1. F-Rating: Not less than the fire-resistance rating of constructions penetrated.
- C. Penetrations in Horizontal Assemblies: Ratings determined per ASTM E 814 or UL 1479, based on testing at a positive pressure differential of 0.01-inch wg.
 - 1. F-Rating: At least 1 hour, but not less than the fire-resistance rating of constructions penetrated.
 - 2. T-Rating: At least 1 hour, but not less than the fire-resistance rating of constructions penetrated except for floor penetrations within the cavity of a wall.
- D. Exposed Penetration Firestopping: Provide products with flame-spread and smoke-developed indexes of less than 25 and 450, respectively, as determined per ASTM E 84.
- E. Accessories: Provide components for each penetration firestopping system that are needed to install fill materials and to maintain ratings required. Use only those components specified by penetration firestopping manufacturer and approved by qualified testing and inspecting agency for firestopping indicated.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Examine substrates and conditions, with Installer present, for compliance with requirements for opening configurations, penetrating items, substrates, and other conditions affecting performance of the Work.
- B. Install penetration firestopping to comply with manufacturer's written installation instructions and published drawings for products and applications indicated.
- C. Install forming materials and other accessories of types required to support fill materials during their application and in the position needed to produce cross-sectional shapes and depths required to achieve fire ratings indicated.
 - 1. After installing fill materials and allowing them to fully cure, remove combustible forming materials and other accessories not indicated as permanent components of firestopping.
- D. Install fill materials for firestopping by proven techniques to produce the following results:
 - 1. Fill voids and cavities formed by openings, forming materials, accessories, and penetrating items as required to achieve fire-resistance ratings indicated.
 - 2. Apply materials so they contact and adhere to substrates formed by openings and penetrating items.
 - 3. For fill materials that will remain exposed after completing the Work, finish to produce smooth, uniform surfaces that are flush with adjoining finishes.

3.2 IDENTIFICATION

- A. Identify penetration firestopping with preprinted metal or plastic labels. Attach labels permanently to surfaces adjacent to and within 6 inches of firestopping edge so labels will be visible to anyone seeking to remove penetrating items or firestopping. Use mechanical fasteners or self-adhering-type labels with adhesives capable of permanently bonding labels to surfaces on which labels are placed. Include the following information on labels:
 - 1. The words "Warning Penetration Firestopping Do Not Disturb. Notify Building Management of Any Damage."
 - 2. Contractor's name, address, and phone number.
 - 3. Designation of applicable testing and inspecting agency.
 - 4. Date of installation.
 - 5. Manufacturer's name.
 - 6. Installer's name.

SECTION 07 92 00 - JOINT SEALANTS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Silicone joint sealants.
 - 2. Nonstaining silicone joint sealants.
 - 3. Urethane joint sealants.
 - 4. Mildew-resistant joint sealants.
 - 5. Latex joint sealants.

1.2 ACTION SUBMITTALS

- A. Product Data: For each joint-sealant product.
- B. Joint-Sealant Schedule: Include the following information:
 - 1. Joint-sealant application, joint location, and designation.

1.3 WARRANTY

- A. Special Installer's Warranty: Installer agrees to repair or replace joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.
 - 1. Warranty Period: Two years from date of Substantial Completion.
- B. Special Manufacturer's Warranty: Manufacturer agrees to furnish joint sealants to repair or replace those joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 JOINT SEALANTS, GENERAL

A. Compatibility: Provide joint sealants, backings, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, asdemonstrated by joint-sealant manufacturer, based on testing and field experience.

B. Colors of Exposed Joint Sealants: As selected by Architect from manufacturer's full range.

2.2 SILICONE JOINT SEALANTS

- A. Silicone, S, NS, 100/50, NT: Single-component, nonsag, plus 100 percent and minus 50 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant; ASTM C 920, Type S, Grade NS, Class 100/50, Use NT.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. GE Construction Sealants; SCS2700 SilPruf LM.
 - b. Sika Corporation U.S.; Sikasil WS-290 or Sikasil WS-290 FPS.
- B. Silicone, S, NS, 50, NT: Single-component, nonsag, plus 50 percent and minus 50 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant; ASTM C 920, Type S, Grade NS, Class 50, Use NT.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Dow Corning Corporation; 791.
 - b. GE Construction Sealants; Momentive Performance Materials Inc; SCS2000 SilPruf.
 - c. May National Associates, Inc., a subsidiary of Sika Corporation U.S.; Bondaflex Sil 265 LTS.
 - d. Pecora Corporation; PCS.
 - e. Sika Corporation U.S.; Sikasil WS-295 or Sikasil WS-295 FPS.
- C. Silicone, S, NS, 35, NT: Single-component, nonsag, plus 35 percent and minus 35 percent movement capability. nontraffic-use, neutral-curing silicone joint sealant; ASTM C 920, Type S, Grade NS, Class 35, Use NT.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. GE Construction Sealants; Momentive Performance Materials Inc; SWS.
- D. Silicone, S, NS, 25, NT: Single-component, nonsag, plus 25 percent and minus 25 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant; ASTM C 920, Type S, Grade NS, Class 25, Use NT.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Dow Corning Corporation; 758.
 - b. GE Construction Sealants; Momentive Performance Materials Inc; SCS2350.
 - c. Polymeric Systems, Inc.; PSI-631 PSI-641.
 - d. Schnee-Morehead, Inc., an ITW company; SM5731 Poly-Glaze Plus.
 - e. Sherwin-Williams Company (The); White Lighning Silicone Ultra All Purpose Sealant.

- E. Silicone, S, NS, 100/50, T, NT: Single-component, nonsag, plus 100 percent and minus 50 percent movement capability, traffic- and nontraffic-use, neutral-curing silicone joint sealant; ASTM C 920, Type S, Grade NS, Class 100/50, Uses T and NT.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Dow Corning Corporation; NS.
 - b. May National Associates, Inc., a subsidiary of Sika Corporation U.S.; Bondaflex Sil 728 NS.
- F. Silicone, S, NS, 50, T, NT: Single-component, nonsag, plus 50 percent and minus 50 percent movement capability, traffic- and nontraffic-use, neutral-curing silicone joint sealant; ASTM C 920, Type S, Grade NS, Class 50, Uses T and NT.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Dow Corning Corporation; 799 CCS.
 - b. Soudal USA; RTV 50.
- G. Silicone, S, NS, 25, T, NT: Single-component, nonsag, plus 25 percent and minus 25 percent movement capability, traffic- and nontraffic-use, neutral-curing silicone joint sealant; ASTM C 920, Type S, Grade NS, Class 25, Uses T and NT.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - May National Associates, Inc., a subsidiary of Sika Corporation U.S.; Bondaflex Sil 199 PG, Bondaflex Sil 200 GPN, Bondaflex Sil 201 FC, or Bondaflex Sil 211 FC.
 - b. Sika Corporation U.S.; Sikasil-N Plus US.
- H. Silicone, S, P, 100/50, T, NT: Single-component, pourable, plus 100 percent and minus 50 percent movement capability traffic- and nontraffic-use, neutral-curing silicone joint sealant; ASTM C 920, Type S, Grade P, Class 100/50, Uses T and NT.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. May National Associates, Inc., a subsidiary of Sika Corporation U.S.; Bondaflex Sil 728 SG, Bondaflex Sil 728 SL.
- I. Silicone, S, P, 25, T, NT: Single-component, pourable, plus 25 percent and minus 25 percent movement capability, traffic- and nontraffic-use, neutral-curing silicone joint sealant; ASTM C 920, Type S, Grade P, Class 25, Uses T and NT.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. May National Associates, Inc., a subsidiary of Sika Corporation U.S.; Bondaflex Sil 200 SC, Bondaflex Sil 200 MJS.

- J. Silicone, M, P, 100/50, T, NT: Multicomponent, pourable, plus 100 percent and minus 50 percent movement capability, traffic- and nontraffic-use, neutral-curing silicone joint sealant; ASTM C 920, Type M, Grade P, Class 100/50, Uses T and NT.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. May National Associates, Inc., a subsidiary of Sika Corporation U.S.; Bondaflex Sil 728 RCS.

2.3 NONSTAINING SILICONE JOINT SEALANTS

- A. Nonstaining Joint Sealants: No staining of substrates when tested according to ASTM C 1248.
- B. Silicone, Nonstaining, S, NS, 100/50, NT: Nonstaining, single-component, nonsag, plus 100 percent and minus 50 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant; ASTM C 920, Type S, Grade NS, Class 100/50, Use NT.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. May National Associates, Inc., a subsidiary of Sika Corporation U.S.; Bondaflex Sil 290 FPS-NB or Bondaflex Sil 290 NB.
 - b. Pecora Corporation; 890FTS/TXTR 890 NST.
 - c. Tremco Incorporated; Spectrem 1.
- C. Silicone, Nonstaining, S, NS, 50, NT: Nonstaining, single-component, nonsag, plus 50 percent and minus 50 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant; ASTM C 920, Type S, Grade NS, Class 50, Use NT.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Dow Corning Corporation; 756 SMS 795.
 - b. GE Construction Sealants; Momentive Performance Materials Inc; SilPruf NB.
 - c. May National Associates, Inc., a subsidiary of Sika Corporation U.S.; Bondaflex Sil 295 FPS NB.
 - d. Pecora Corporation; 864NST 895NST 898NST.
 - e. Tremco Incorporated; Spectrem 2 Spectrem 3.
- D. Silicone, Nonstaining, S, NS, 100/50, T, NT: Nonstaining, single-component, nonsag, plus 100 percent and minus 50 percent movement capability, traffic- and nontraffic-use, neutral-curing silicone joint sealant; ASTM C 920, Type S, Grade NS, Class 100/50, Uses T and NT.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Dow Corning Corporation; 790.
- E. Silicone, Nonstaining, M, NS, 50, NT: Nonstaining, multicomponent, nonsag, plus 50 percent and minus 50 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant; ASTM C 920, Type M, Grade NS, Class 50, Use NT.

- 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Tremco Incorporated; Spectrem 4-TS.

2.4 URETHANE JOINT SEALANTS

- A. Urethane, S, NS, 25, NT: Single-component, nonsag, nontraffic-use, plus 25 percent and minus 25 percent movement capability, urethane joint sealant; ASTM C 920, Type S, Grade NS, Class 25, Use NT.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. BASF Construction Chemicals Building Systems; Sonalastic TX1.
 - b. Bostik, Inc.; Chem-Calk GPS1 900 915 916 2000.
 - c. ER Systems, an ITW Company; Pacific Polymers Elasto-Thane 230 MP.
 - d. Pecora Corporation; Dynatrol I-XL.
 - e. Polymeric Systems, Inc.; Flexiprene 1000.
 - f. Schnee-Morehead, Inc., an ITW company; Permathane SM7108.
 - g. Sherwin-Williams Company (The); Stampede-1 Stampede-TX.
 - h. Sika Corporation U.S.; Sikaflex Textured Sealant.
 - i. Tremco Incorporated; Dymonic.
- B. Urethane, S, NS, 100/50, T, NT: Single-component, nonsag, plus 100 percent and minus 50 percent movement capability, traffic- and nontraffic-use, urethane joint sealant; ASTM C 920, Type S, Grade NS, Class 100/50, Uses T and NT.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Sika Corporation U.S.; Sikaflex 15LM.
- C. Urethane, S, NS, 25, T, NT: Single-component, nonsag, plus 25 percent and minus 25 percent movement capability, traffic- and nontraffic-use, urethane joint sealant; ASTM C 920, Type S, Grade NS, Class 25, Uses T and NT.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. LymTal International, Inc.; Iso-Flex 330 or Iso-Flex 875R.
- D. Urethane, S, P, 35, T, NT: Single-component, pourable, plus 35 percent and minus 35 percent movement capability, traffic- and nontraffic-use, urethane joint sealant; ASTM C 920, Type S, Grade P, Class 35, Uses T and NT.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Bostik, Inc.; Chem-Calk [955-SL].

- E. Urethane, S, P, 25, T, NT: Single-component, pourable, plus 25 percent and minus 25 percent movement capability, traffic- and nontraffic-use, urethane joint sealant; ASTM C 920, Type S, Grade P, Class 25, Uses T and NT.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. BASF Construction Chemicals Building Systems; Sonolastic SL 1.
 - b. Pecora Corporation; NR-201.
 - c. Polymeric Systems, Inc.; Flexiprene 952.
 - d. Schnee-Morehead, Inc.; an ITW company; Permathane SM7101.
 - e. Sherwin-Williams Company (The); Stampede 1SL.
- F. Urethane, M, NS, 50, NT: Multicomponent, nonsag, plus 50 percent and minus 50 percent movement capability nontraffic-use, urethane joint sealant; ASTM C 920, Type M, Grade NS, Class 50, Use NT.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Pecora Corporation; Dynatrol II.
- G. Urethane, M, NS, 25, NT: Multicomponent, nonsag, plus 25 percent and minus 25 percent movement capability, nontraffic-use, urethane joint sealant; ASTM C 920, Type M, Grade NS, Class 25, Use NT.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Sherwin-Williams Company (The); Stampede-2NS.
- H. Urethane, M, NS, 50, T, NT: Multicomponent, nonsag, plus 50 percent and minus 50 percent movement capability, traffic- and nontraffic-use, urethane joint sealant; ASTM C 920, Type M, Grade NS, Class 50, Uses T and NT.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Tremco Incorporated; Dymeric 240.
- I. Urethane, M, NS, 25, T, NT: Multicomponent, nonsag, plus 25 percent and minus 25 percent movement capability, traffic- and nontraffic-use, urethane joint sealant; ASTM C 920, Type M, Grade NS, Class 25, Uses T and NT.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Bostik, Inc.; Chem-Calk 505.
 - b. LymTal International, Inc.; Iso-Flex 881or Iso-Flex 885 SG.
 - c. Sika Corporation U.S.; Sikaflex 2c NS EZ Mix.
- J. Urethane, M, P, 50, T, NT: Multicomponent, pourable, plus 50 percent and minus 50 percent movement capability, traffic- and nontraffic-use, urethane joint sealant; ASTM C 920, Type M, Grade P, Class 50, Uses T and NT.

- 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. LymTal International, Inc.; Iso-Flex 888QC.
- K. Urethane, M, P, 25, T, NT: Multicomponent, pourable, plus 25 percent and minus 25 Urethane, M, P, 25, T, NT: Multicomponent, pourable, plus 25 percent and minus 25 percent movement capability, traffic- and nontraffic-use, urethane joint sealant; ASTM C 920, Type M, Grade P, Class 25, Uses T and NT.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Bostik, Inc.; Chem-Calk 555-SL.
 - b. LymTal International, Inc.; Iso-Flex 880 GB.
 - c. Pecora Corporation; Dynatrol II SG Urexpan NR 200
 - d. Sherwin-Williams Company (The); Stampede-2SL.
 - e. Tremco Incorporated; THC 900/901.

2.5 MILDEW-RESISTANT JOINT SEALANTS

- A. Mildew-Resistant Joint Sealants: Formulated for prolonged exposure to humidity with fungicide to prevent mold and mildew growth.
- B. Silicone, Mildew Resistant, Acid Curing, S, NS, 25, NT: Mildew-resistant, single-component, nonsag, plus 25 percent and minus 25 percent movement capability, nontraffic-use, acid-curing silicone joint sealant; ASTM C 920, Type S, Grade NS, Class 25, Use NT.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Dow Corning Corporation; 786-M White.
 - b. GE Construction Sealants; Momentive Performance Materials Inc.; SCS1700 Sanitary.
 - c. May National Associates, Inc., a subsidiary of Sika Corporation U.S.; Bondaflex Sil 100 WF.
 - d. Soudal USA; RTV GP.
 - e. Tremco Incorporated; Tremsil 200.
- C. Acrylic Latex: Acrylic latex or siliconized acrylic latex, ASTM C 834, Type OP, Grade NF.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. BASF Construction Chemicals Building Systems; Sonolac.
 - b. May National Associates, Inc., a subsidiary of Sika Corporation U.S.; Bondaflex 600 Bondaflex Sil-A 700.
 - c. Pecora Corporation; AC-20.
 - d. Sherwin-Williams Company (The); 850A 950A PowerHouse.
 - e. Tremco Incorporated; Tremflex 834.

2.6 JOINT-SEALANT BACKING

- A. Cylindrical Sealant Backings: ASTM C 1330, Type C (closed-cell material with a surface skin), and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. BASF Construction Chemicals Building Systems.
 - b. Construction Foam Products, a division of Nomaco, Inc.
- B. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer.

2.7 MISCELLANEOUS MATERIALS

- A. Primer: Material recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated, as determined from preconstruction joint-sealant-substrate tests and field tests.
- B. Cleaners for Nonporous Surfaces: Chemical cleaners acceptable to manufacturers of sealants and sealant backing materials.
- C. Masking Tape: Nonstaining, nonabsorbent material compatible with joint sealants and surfaces adjacent to joints.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Surface Cleaning of Joints: Clean out joints immediately before installing joint sealants to comply with joint-sealant manufacturer's written instructions and the following requirements:
 - 1. Remove laitance and form-release agents from concrete.
 - 2. Clean nonporous joint substrate surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion.
- B. Joint Priming: Prime joint substrates where recommended by joint-sealant manufacturer or as indicated by preconstruction joint-sealant-substrate tests or prior experience.
- C. Masking Tape: Use masking tape where required to prevent contact of sealant or primer with adjoining surfaces.

3.2 INSTALLATION OF JOINT SEALANTS

- A. General: Comply with ASTM C 1193 and joint-sealant manufacturer's written installation instructions for products and applications indicated, unless more stringent requirements apply.
- B. Install sealant backings of kind indicated to support sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.
- C. Install bond-breaker tape behind sealants where sealant backings are not used between sealants and backs of joints.
- D. Install sealants using proven techniques that comply with the following and at the same time backings are installed:
 - 1. Place sealants so they directly contact and fully wet joint substrates.
 - 2. Completely fill recesses in each joint configuration.
 - 3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.
- E. Tooling of Nonsag Sealants: Immediately after sealant application and before skinning or curing begins, tool sealants to form smooth, uniform beads of configuration indicated. Use tooling agents that are approved in writing by sealant manufacturer and that do not discolor sealants or adjacent surfaces.
 - 1. Provide concave joint profile per Figure 8A in ASTM C 1193 unless otherwise indicated.

3.3 JOINT-SEALANT SCHEDULE

- A. Joint-Sealant Application: Exterior joints in horizontal traffic surfaces.
 - 1. Joint Locations:
 - a. Isolation and contraction joints in cast-in-place concrete slabs.
 - b. Joints between different materials listed above.
 - c. Other joints as indicated on Drawings.
 - 2. Joint Sealant: Urethane, M, P, 50, T, NT.
 - 3. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.
- B. Joint-Sealant Application: Exterior joints in vertical surfaces and horizontal nontraffic surfaces.
 - 1. Joint Locations:
 - a. Control and expansion joints in unit masonry.
 - b. Joints in dimension stone cladding.
 - c. Other joints as indicated on Drawings.
- 2. Joint Sealant: Silicone, nonstaining, S, NS, 50, NT.
- 3. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.
- C. Joint-Sealant Application: Interior joints in horizontal traffic surfaces.
 - 1. Joint Locations:
 - a. Isolation joints in cast-in-place concrete slabs.
 - b. Control and expansion joints in tile flooring.
 - c. Other joints as indicated on Drawings.
 - 2. Joint Sealant: Urethane, S, P, 25, T, NT.
 - 3. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.
- D. Joint-Sealant Application: Interior joints in vertical surfaces and horizontal nontraffic surfaces.
 - 1. Joint Locations:
 - a. Control and expansion joints on exposed interior surfaces of exterior walls.
 - b. Tile control and expansion joints.
 - c. Vertical joints on exposed surfaces of unit masonry concrete walls andpartitions.
 - d. Other joints as indicated on Drawings.
 - 2. Joint Sealant: Urethane, S, NS, 25, NT.
 - 3. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.
- E. Joint-Sealant Application: Interior joints in vertical surfaces and horizontal nontraffic surfaces not subject to significant movement.
 - 1. Joint Locations:
 - a. Control joints on exposed interior surfaces of exterior walls.
 - b. Perimeter joints between interior wall surfaces and frames of interior doorswindows and elevator entrances.
 - c. Other joints as indicated on Drawings.
 - 2. Joint Sealant: Acrylic latex.
 - 3. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.
- F. Joint-Sealant Application: Mildew-resistant interior joints in vertical surfaces and horizontal nontraffic surfaces.
 - 1. Joint Locations:
 - a. Joints between plumbing fixtures and adjoining walls, floors, and counters.
 - b. Tile control and expansion joints where indicated.
 - c. Other joints as indicated on Drawings.
 - 2. Joint Sealant: Silicone, mildew resistant, acid curing, S, NS, 25, NT.

- 3. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.
- G. Joint-Sealant Application: Concealed mastics.
 - 1. Joint Locations:
 - a. Aluminum thresholds.
 - b. Sill plates.
 - c. Other joints as indicated on Drawings.
 - 2. Joint Sealant: Butyl-rubber based.
 - 3. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.

END OF SECTION 07 92 00

SECTION 079500.01 – EMSEAL EXTERIOR WALL EXPANSION JOINTS

PART 1 – GENERAL

- 1.01 Work Included
 - A. The work shall consist of furnishing and installing waterproof expansion joints in accordance with the details shown on the plans and the requirements of the specifications. Preformed sealant shall be silicone pre-coated, preformed, pre-compressed, self-expanding, sealant system.

1.02 Submittals

- A. Standard Submittal Package Submit typical expansion joint drawing(s) indicating pertinent dimensions, general construction, expansion joint opening dimensions and product information.
- B. Sample of material is required at time of submittal.
- C. Submit standard color charts for owner review and selection.
- D. All products certified in writing by independent laboratory test report to exceed the requirements of curtain wall performance tests ASTM E330, E283-04, and E331. Product must meet or exceed hurricane-force wind loading with no deflection at both positive and negative pressures up to 4954 Pascals—equal to 200 mph winds (ASTM E330-02-procedure A).
- E. All products certified in writing by independent laboratory test report to ASTM E90-09 and to meet or exceed an STC 52 in STC 56 wall and OITC 38 rating in an OITC 38 wall.
- F. All products shall be certified in writing to be: a) capable of withstanding 150°F (65°C) for 3 hours while compressed down to the minimum of movement capability dimension of the basis of design product (-50% of nominal material size) without evidence of any bleeding of impregnation medium from the material; and b) that the same material after the heat stability test and after first being cooled to room temperature will subsequently self-expand to the maximum of movement capability dimension of the basis-of-design product (+50% of nominal material size) within 24 hours at room temperature 68°F (20°C).
- 1.03 Product Delivery, Storage and Handling
 - A. Deliver products to site in Manufacturer's original, intact, labeled containers. Handle and protect as necessary to prevent damage or deterioration during shipment, handling and storage. Store in accordance with manufacturer's installation instructions.

1.04 Basis of Design

- All joints shall be designed to meet the specified performance criteria of the EMSEAL COLORSEAL product as manufactured by: (USA & International) EMSEAL JOINT SYSTEMS, LTD 25 Bridle Lane, Westborough, MA 01581-2603, Toll Free: 800-526 8365.
- B. Alternate manufacturers must demonstrate that their products meet or exceed the design criteria and must submit certified performance test reports performed by nationally recognized independent laboratories as called for in section 1.02 Submittals.
- 1.05 Quality Assurance
 - A. The General Contractor will conduct a pre-construction meeting with all parties and trades involved in the treatment of work at and around expansion joints including, but not limited to, concrete, mechanical, electrical, HVAC, landscaping, masonry, curtain wall, roofing, waterproofing, fire-stopping, caulking, flooring and other finish trade subcontractors. All superintendents and foremen with responsibility for oversight and setting of the joint gap must attend this meeting. The General Contractor is responsible to coordinate and schedule all trades and ensure that all subcontractors understand their responsibilities in relation to expansion joints and that their work cannot impede anticipated structural movement at the expansion joints, or compromise the achievement of watertighness or life safety at expansion joints in any way.
 - B. Warranty Manufacturer's standard warranty shall apply.

PART 2 – PRODUCT

2.01 General

- A. Provide watertight, energy-efficient exterior joints in vertical-plane walls (above-grade).
- B. Provide <u>EMSEAL COLORSEAL as manufactured by EMSEAL JOINT SYSTEMS LTD</u> and as indicated on drawings for vertical expansion joint locations.
 - 1. Nominal Joint Width = As indicated on drawings.
- C. Preformed sealant shall be silicone pre-coated, preformed, pre-compressed, selfexpanding, sealant system. Expanding foam to be cellular foam impregnated with a water-based, non-drying, 100% acrylic dispersion. Seal shall combine factory-applied, low-modulus silicone and a backing of acrylic-impregnated expanding foam into a unified hybrid sealant system.

- D. Material shall be capable of movements of +50%, -50% (100% total) of nominal material size
- E. Silicone external color facing to be factory-applied to the foam while it is partially precompressed to a width greater than maximum joint extension and cured before final compression. When compressed to final supplied dimension, a bellow(s) to handle movement must be created in the silicone coating. Silicone coating to be available in a range of not less than 26 standard colors for coordination with typical building materials.
- F. Select the sealant system model appropriate to the movement and design requirements at each joint location that meet the project specification or as defined by the structural engineer of record.
- G. Manufacturer's Checklist must be completed by expansion joint subcontractor and returned to manufacturer at time of ordering material.

2.02 Fabrication

- A. EMSEAL COLORSEAL by EMSEAL JOINT SYTEMS LTD must be supplied precompressed to less than the joint size, packaged in shrink-wrapped lengths (sticks) with a mounting adhesive on one face.
- B. Directional changes and terminations into horizontal plane surfaces to be provided by factory-manufactured universal-90-degree single units containing minimum 12-inch long leg and 6-inch long leg or custom leg on each side of the direction change or through field fabrication in strict accordance with installation instructions.

PART 3 – EXECUTION

3.01 Installation

- A. Preparation of the Work Area
 - 1. The contractor shall provide a properly formed and prepared expansion joint openings constructed to the exact dimensions and elevations shown on manufacturer's standard system drawings or as shown on the contract drawings. Deviations from these dimensions will not be allowed without the written consent of the engineer of record.
 - 2. The contractor shall clean the joint opening of all contaminants immediately prior to installation of expansion joint system. Repair spalled, irregular or unsound joint surfaces using accepted industry practices for repair of the substrates in question. Remove protruding roughness to ensure joint sides are smooth. Ensure that there is sufficient depth to receive the full depth of the size of the EMSEAL COLORSEAL being installed plus at least ¼-inch (6mm) for the application of corner beads. Refer to Manufacturers Installation Guide for detailed step-by-step instructions.

3. No drilling, or screwing, or fasteners of any type are permitted to anchor the sealant system into the substrate.

3.02 Clean and Protect

A. Protect the system and its components during construction. Subsequent damage to the expansion joint system will be repaired at the general contractor's expense. After work is complete, clean exposed surfaces with a suitable cleaner that will not harm or attack the finish.

END OF SECTION 079500.01

Copyright 2014 by The American Institute of Architects (AIA) SECTION 08 11 13 - HOLLOW METAL DOORS AND FRAMES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes:
 - 1. Standard hollow metal doors and frames.

1.2 DEFINITIONS

A. Minimum Thickness: Minimum thickness of base metal without coatings according to NAAMM-HMMA 803 or SDI A250.8.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Include elevations, door edge details, frame profiles, metal thicknesses, preparations for hardware, and other details.
 - 1. Include special frame details for frames of Sound Control Doors (STC-rated).
- C. Schedule: Prepared by or under the supervision of supplier, using same reference numbers for details and openings as those on Drawings.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Apex Industries, Inc.
 - 2. Ceco Door; ASSA ABLOY.
 - 3. Curries Company; ASSA ABLOY.
 - 4. Republic Doors and Frames.
 - 5. Steelcraft; an Ingersoll-Rand company.

2.2 REGULATORY REQUIREMENTS

A. Fire-Rated Assemblies: Complying with NFPA 80 and listed and labeled by a qualified testing agency acceptable to authorities having jurisdiction for fire-protection ratings and temperature-rise limits indicated, based on testing at positive pressure according to NFPA 252 or UL 10C.

2.3 INTERIOR DOORS AND FRAMES

- A. Heavy-Duty Doors and Frames: SDI A250.8, Level 2. At locations indicated in the Door and Frame Schedule.
 - 1. Physical Performance: Level B according to SDI A250.4.
 - 2. Doors:
 - a. Type: As indicated in the Door and Frame Schedule.
 - b. Thickness: 1-3/4 inches.
 - c. Face: Uncoated, Metallic-coated, cold-rolled steel sheet, minimum thickness of 0.042 inch.
 - d. Edge Construction: Model 1, Full Flush Model 2, Seamless.
 - e. Core: Kraft-paper honeycomb.
 - 3. Frames:
 - a. Materials: Uncoated, Metallic-coated, steel sheet, minimum thickness of 0.053 inch.
 - b. Construction: Slip-on drywall Face welded Full profile welded.
 - 4. Frames for STC-Rated Doors
 - a. NOTE: Hollow metal frames for Sound Doors will be required to meet STC rating of the door itself by grouting solid, or another acceptable method.
 - 5. Exposed Finish: Prime.

2.4 EXTERIOR HOLLOW-METAL DOORS AND FRAMES

- A. Extra-Heavy-Duty Doors and Frames: SDI A250.8, Level 3. At locations indicated in the Door and Frame Schedule.
 - 1. Physical Performance: Level A according to SDI A250.4.
 - 2. Doors:
 - a. Type: As indicated in the Door and Frame Schedule.
 - b. Thickness: 1-3/4 inches.

- c. Face: Metallic-coated steel sheet, minimum thickness of 0.053 inch, with minimum A40 coating.
- d. Edge Construction: Model 1, Full Flush Model 2, Seamless Model 3, Stile and Rail.
- e. Core: Polystyrene.
- 3. Thermal-Rated Doors: Provide doors fabricated with thermal-resistance value (R-value) of not less than 2.1 deg F x h x sq. ft./Btu when tested according to ASTM C 1363.
- 4. Frames:
 - a. Materials: Metallic-coated steel sheet, minimum thickness of 0.053 inch, with minimum A40 coating.
 - b. Construction: Knocked down Face welded Full profile welded.
- 5. Exposed Finish: Prime.

2.5 FRAME ANCHORS

- A. Jamb Anchors:
 - 1. Masonry Type: Adjustable strap-and-stirrup or T-shaped anchors to suit frame size, not less than 0.042 inch thick, with corrugated or perforated straps not less than 2 inches wide by 10 inches long; or wire anchors not less than 0.177 inch thick.
 - 2. Stud-Wall Type: Designed to engage stud, welded to back of frames; not less than 0.042 inch thick.
 - 3. Compression Type for Drywall Slip-on Frames: Adjustable compression anchors.
 - 4. Postinstalled Expansion Type for In-Place Concrete or Masonry: Minimum 3/8-inchdiameter bolts with expansion shields or inserts. Provide pipe spacer from frame to wall, with throat reinforcement plate, welded to frame at each anchor location.
- B. Floor Anchors: Formed from same material as frames, minimum thickness of 0.042 inch, and as follows:
 - 1. Monolithic Concrete Slabs: Clip-type anchors, with two holes to receive fasteners.
 - 2. Separate Topping Concrete Slabs: Adjustable-type anchors with extension clips, allowing not less than 2-inch height adjustment. Terminate bottom of frames at finish floor surface.

2.6 MATERIALS

- A. Cold-Rolled Steel Sheet: ASTM A 1008/A 1008M, Commercial Steel (CS), Type B; suitable for exposed applications.
- B. Hot-Rolled Steel Sheet: ASTM A 1011/A 1011M, Commercial Steel (CS), Type B; free of scale, pitting, or surface defects; pickled and oiled.
- C. Metallic-Coated Steel Sheet: ASTM A 653/A 653M, Commercial Steel (CS), Type B.

- D. Frame Anchors: ASTM A 879/A 879M, Commercial Steel (CS), 04Z coating designation; mill phosphatized.
 - 1. For anchors built into exterior walls, steel sheet complying with ASTM A 1008/A 1008M or ASTM A 1011/A 1011M, hot-dip galvanized according to ASTM A 153/A 153M, Class B.
- E. Inserts, Bolts, and Fasteners: Hot-dip galvanized according to ASTM A 153/A 153M.
- F. Power-Actuated Fasteners in Concrete: From corrosion-resistant materials.
- G. Grout: ASTM C 476, except with a maximum slump of 4 inches, as measured according to ASTM C 143/C 143M.
- H. Mineral-Fiber Insulation: ASTM C 665, Type I (blankets without membrane facing).
- I. Glazing: Section 08 80 00 "Glazing."
- J. Bituminous Coating: Cold-applied asphalt mastic, compounded for 15-mil dry film thickness per coat.

2.7 FABRICATION

- A. Fabricate hollow-metal work to be rigid and free of defects, warp, or buckle. Accurately form metal to required sizes and profiles, with minimum radius for metal thickness. Where practical, fit and assemble units in manufacturer's plant. To ensure proper assembly at Project site, clearly identify work that cannot be permanently factory assembled before shipment.
- B. Hollow-Metal Doors:
 - 1. Exterior Doors: Provide weep-hole openings in bottoms of exterior doors to permit moisture to escape. Seal joints in top edges of doors against water penetration.
 - 2. Astragals: Provide overlapping astragal on one leaf of pairs of doors where required by NFPA 80 for fire-performance rating or where indicated.
- C. Hollow-Metal Frames: Where frames are fabricated in sections due to shipping or handling limitations, provide alignment plates or angles at each joint, fabricated of same thickness metal as frames.
 - 1. Sidelite and Transom Bar Frames: Provide closed tubular members with no visible face seams or joints, fabricated from same material as door frame. Fasten members at crossings and to jambs by butt welding.
 - 2. Provide countersunk, flat- or oval-head exposed screws and bolts for exposed fasteners unless otherwise indicated.
 - 3. Grout Guards: Weld guards to frame at back of hardware mortises in frames to be grouted.

- 4. Floor Anchors: Weld anchors to bottoms of jambs with at least four spot welds per anchor; however, for slip-on drywall frames, provide anchor clips or countersunk holes at bottoms of jambs.
- 5. Jamb Anchors: Provide number and spacing of anchors as follows:
 - a. Masonry Type: Locate anchors not more than 16 inches from top and bottom of frame. Space anchors not more than 32 inches o.c., to match coursing, and as follows:
 - 1) Two anchors per jamb up to 60 inches high.
 - 2) Three anchors per jamb from 60 to 90 inches high.
 - 3) Four anchors per jamb from 90 to 120 inches high.
 - 4) Four anchors per jamb plus one additional anchor per jamb for each 24 inches or fraction thereof above 120 inches high.
 - b. Stud-Wall Type: Locate anchors not more than 18 inches from top and bottom of frame. Space anchors not more than 32 inches o.c. and as follows:
 - 1) Three anchors per jamb up to 60 inches high.
 - 2) Four anchors per jamb from 60 to 90 inches high.
 - 3) Five anchors per jamb from 90 to 96 inches high.
 - 4) Five anchors per jamb plus one additional anchor per jamb for each 24 inches or fraction thereof above 96 inches high.
 - 5) NOTE: Frames of sound-control doors (STC-rated) will require special construction.
 - c. Compression Type: Not less than two anchors in each frame.
 - d. Postinstalled Expansion Type: Locate anchors not more than 6 inches from top and bottom of frame. Space anchors not more than 26 inches o.c.
- 6. Door Silencers: Except on weather-stripped frames, drill stops to receive door silencers.
 - a. Single-Door Frames: Drill stop in strike jamb to receive three door silencers.
 - b. Double-Door Frames: Drill stop in head jamb to receive two door silencers.
- D. Hardware Preparation: Factory prepare hollow-metal work to receive templated mortised hardware; include cutouts, reinforcement, mortising, drilling, and tapping according to SDI A250.6, the Door Hardware Schedule, and templates.
 - 1. Reinforce doors and frames to receive nontemplated, mortised, and surface-mounted door hardware.
 - 2. Comply with applicable requirements in SDI A250.6 and BHMA A156.115 for preparation of hollow-metal work for hardware.

2.8 STEEL FINISHES

A. Prime Finish: Clean, pretreat, and apply manufacturer's standard primer.

1. Shop Primer: SDI A250.10.

2.9 ACCESSORIES

A. Grout Guards: Formed from same material as frames, not less than 0.016 inch thick.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Hollow-Metal Frames: Install hollow-metal frames for doors, transoms, sidelites, borrowed lites, and other openings, of size and profile indicated. Comply with SDI A250.11 or NAAMM-HMMA 840 as required by standards specified.
 - 1. Set frames accurately in position; plumbed, aligned, and braced securely until permanent anchors are set. After wall construction is complete, remove temporary braces, leaving surfaces smooth and undamaged.
 - a. At fire-rated openings, install frames according to NFPA 80.
 - b. Where frames are fabricated in sections because of shipping or handling limitations, field splice at approved locations by welding face joint continuously; grind, fill, dress, and make splice smooth, flush, and invisible on exposed faces.
 - c. Install frames with removable stops located on secure side of opening.
 - d. Install door silencers in frames before grouting.
 - e. Remove temporary braces necessary for installation only after frames have been properly set and secured.
 - f. Check plumb, square, and twist of frames as walls are constructed. Shim as necessary to comply with installation tolerances.
 - g. Field apply bituminous coating to backs of frames that will be filled with grout containing antifreezing agents.
 - 2. Floor Anchors: Provide floor anchors for each jamb and mullion that extends to floor, and secure with postinstalled expansion anchors.
 - a. Floor anchors may be set with power-actuated fasteners instead of postinstalled expansion anchors if so indicated and approved on Shop Drawings.
 - 3. Metal-Stud Partitions: Solidly pack mineral-fiber insulation inside frames.
 - a. STC-rated door locations: grout solid or propose another method that meets STC-rating of door.
 - 4. Masonry Walls: Coordinate installation of frames to allow for solidly filling space between frames and masonry with grout.
 - 5. Concrete Walls: Solidly fill space between frames and concrete with mineral-fiber insulation.

- 6. In-Place Concrete or Masonry Construction: Secure frames in place with postinstalled expansion anchors. Countersink anchors, and fill and make smooth, flush, and invisible on exposed faces.
- 7. In-Place Metal or Wood-Stud Partitions: Secure slip-on drywall frames in place according to manufacturer's written instructions.
- 8. Installation Tolerances: Adjust hollow-metal door frames for squareness, alignment, twist, and plumb to the following tolerances:
 - a. Squareness: Plus or minus 1/16 inch, measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head.
 - b. Alignment: Plus or minus 1/16 inch, measured at jambs on a horizontal line parallel to plane of wall.
 - c. Twist: Plus or minus 1/16 inch, measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall.
 - d. Plumbness: Plus or minus 1/16 inch, measured at jambs at floor.
- B. Hollow-Metal Doors: Fit hollow-metal doors accurately in frames, within clearances specified below. Shim as necessary.
 - 1. Non-Fire-Rated Steel Doors:
 - a. Between Door and Frame Jambs and Head: 1/8 inch plus or minus 1/32 inch.
 - b. Between Edges of Pairs of Doors: 1/8 inch to 1/4 inch plus or minus 1/32 inch.
 - c. At Bottom of Door: 5/8 inchplus or minus 1/32 inch.
 - d. Between Door Face and Stop: 1/16 inch to 1/8 inch plus or minus 1/32 inch.
 - 2. Fire-Rated Doors: Install doors with clearances according to NFPA 80.
 - 3. Smoke-Control Doors: Install doors and gaskets according to NFPA 105.
- C. Glazing: Comply with installation requirements in Section 08 80 00 "Glazing" and with hollow-metal manufacturer's written instructions.
 - 1. Secure stops with countersunk flat- or oval-head machine screws spaced uniformly not more than 9 inches o.c. and not more than 2 inches o.c. from each corner.

3.2 ADJUSTING AND CLEANING

- A. Final Adjustments: Check and readjust operating hardware items immediately before final inspection. Leave work in complete and proper operating condition. Remove and replace defective work, including hollow-metal work that is warped, bowed, or otherwise unacceptable.
- B. Remove grout and other bonding material from hollow-metal work immediately after installation.
- C. Prime-Coat Touchup: Immediately after erection, sand smooth rusted or damaged areas of prime coat and apply touchup of compatible air-drying, rust-inhibitive primer.

- D. Metallic-Coated Surface Touchup: Clean abraded areas and repair with galvanizing repair paint according to manufacturer's written instructions.
- E. Touchup Painting: Cleaning and touchup painting of abraded areas of paint are specified in painting Sections.

END OF SECTION 08 11 13

SECTION 08 14 16 - FLUSH WOOD DOORS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Solid-core doors with wood-veneer faces.
 - 2. Shop priming and Factory finishing flush wood doors.
 - 3. Factory fitting flush wood doors to frames and factory machining for hardware.
- B. Related Requirements:
 - 1. Section 08 80 00 "Glazing" for glass view panels in flush wood doors.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of door.
- B. Shop Drawings: Indicate location, size, and hand of each door; elevation of each kind of door; construction details not covered in Product Data; and the following:
 - 1. Dimensions and locations of blocking.
 - 2. Dimensions and locations of mortises and holes for hardware.
 - 3. Dimensions and locations of cutouts.
 - 4. Undercuts.
 - 5. Requirements for veneer matching.
 - 6. Doors to be factory finished and finish requirements.
 - 7. Fire-protection ratings for fire-rated doors.
- C. Samples: For custom-stained doors as noted on the drawings..

1.3 QUALITY ASSURANCE

A. Manufacturer Qualifications: A qualified manufacturer that is a certified participant in AWI's Quality Certification Program.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 1. Algoma Hardwoods, Inc.
- 2. Marshfield Door Systems, Inc.
- 3. Mohawk Doors; a Masonite company.

2.2 FLUSH WOOD DOORS, GENERAL

- A. WDMA I.S.1-A Performance Grade:
 - 1. Heavy Duty unless otherwise indicated.
 - 2. Extra Heavy Duty: public toilets and janitor's closets .
- B. Fire-Rated Wood Doors: Doors complying with NFPA 80 that are listed and labeled by a qualified testing agency, for fire-protection ratings indicated, based on testing at positive pressure according to NFPA 252.
 - 1. Cores: Provide core specified or mineral core as needed to provide fire-protection rating indicated.
 - 2. Edge Construction: Provide edge construction with intumescent seals concealed by outer stile. Comply with specified requirements for exposed edges.
 - 3. Pairs: Provide fire-retardant stiles that are listed and labeled for applications indicated without formed-steel edges and astragals. Provide stiles with concealed intumescent seals. Comply with specified requirements for exposed edges.
- C. Particleboard-Core Doors:
 - 1. Particleboard: ANSI A208.1, Grade LD-1 or Grade LD-2.
 - 2. Blocking: Provide wood blocking in particleboard-core doors as needed to eliminate through-bolting hardware.
 - 3. Provide doors with glued-wood-stave or structural-composite-lumber cores instead of particleboard cores for doors indicated to receive exit devices.

2.3 VENEER-FACED DOORS FOR TRANSPARENT FINISH

- A. Interior Solid-Core Doors:
 - 1. Grade: Premium, with Grade AA faces.
 - 2. Species: See Drawings.
 - 3. Match between Veneer Leaves: Slip match.
 - 4. Assembly of Veneer Leaves on Door Faces: Balance match.
 - 5. Pair and Set Match: Provide for doors hung in same opening.
 - 6. Core: Particleboard.
 - 7. Construction: Five or seven plies. Stiles and rails are bonded to core, then entire unit is abrasive planed before veneering.

2.4 DOORS FOR OPAQUE FINISH

- A. Interior Solid-Core Doors :
 - 1. Grade: Premium.
 - 2. Faces: Any closed-grain hardwood of mill option.
 - 3. Core: Particleboard.
 - 4. Construction: Five or seven plies. Stiles and rails are bonded to core, then entire unit is abrasive planed before veneering. Faces are bonded to core using a hot press.
 - 5. Construction: Seven plies, either bonded or nonbonded.

2.5 FABRICATION

- A. Factory fit doors to suit frame-opening sizes indicated. Comply with clearance requirements of referenced quality standard for fitting unless otherwise indicated.
 - 1. Comply with NFPA 80 requirements for fire-rated doors.
- B. Factory machine doors for hardware that is not surface applied.
- C. Openings: Factory cut and trim openings through doors.
 - 1. Light Openings: Trim openings with moldings of material and profile indicated.
 - 2. Glazing: Factory install glazing in doors indicated to be factory finished. Comply with applicable requirements in Section 08 80 00 "Glazing."

2.6 SHOP PRIMING

A. Doors for Opaque Finish: Shop prime faces, all four edges, edges of cutouts, and mortises with one coat of wood primer specified in Section 09 91 23" Interior Painting."

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Hardware: For installation, see Section 08 71 00 "Door Hardware."
- B. Installation Instructions: Install doors to comply with manufacturer's written instructions and referenced quality standard, and as indicated.
 - 1. Install fire-rated doors according to NFPA 80.
 - 2. Install smoke- and draft-control doors according to NFPA 105.

- C. Job-Fitted Doors: Align and fit doors in frames with uniform clearances and bevels as indicated below; do not trim stiles and rails in excess of limits set by manufacturer or permitted for fire-rated doors. Machine doors for hardware. Seal edges of doors, edges of cutouts, and mortises after fitting and machining.
 - 1. Clearances: Provide 1/8 inch at heads, jambs, and between pairs of doors. Provide 1/8 inch from bottom of door to top of decorative floor finish or covering unless otherwise indicated. Where threshold is shown or scheduled, provide 1/4 inch from bottom of door to top of threshold unless otherwise indicated.
 - a. Comply with NFPA 80 for fire-rated doors.

END OF SECTION 08 14 16

SECTION 08 14 33 - STILE AND RAIL WOOD DOORS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Exterior stile and rail wood doors.
 - 2. Interior stile and rail wood doors.
 - 3. Interior fire-rated stile and rail wood doors.
 - 4. Fire-rated wood door frames.
 - 5. Factory fitting stile and rail wood doors to frames and factory machining for hardware.
 - 6. Factory priming finishing.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product, including the following:
 - 1. Details of construction and glazing.
 - 2. Door frame construction.
 - 3. Factory-machining criteria.
 - 4. Factory-finishing specifications.
- B. Shop Drawings: Indicate location, size, and hand of each door; elevation of each type of door; construction details not covered in Product Data, including those for stiles, rails, panels, and moldings (sticking); and other pertinent data, including the following:
 - 1. Door schedule indicating door and frame location, type, size, fire protection rating, and swing.
 - 2. Door elevations, dimensions and location of hardware, lite locations, and glazing thickness.
 - 3. Details of frame for each frame type, including dimensions and profile.
 - 4. Details of electrical raceway and preparation for electrified hardware, access control systems, and security systems.
 - 5. Clearances and undercuts.
 - 6. Requirements for veneer matching.
 - 7. Apply AWI Quality Certification Program label to Shop Drawings.
- C. Samples: For factory-finished doors and factory-finished door frames.

1.3 INFORMATIONAL SUBMITTALS

A. Qualification Data: For door inspector.

- 1. Fire-Rated Door Inspector: Submit documentation of compliance with NFPA 80, section 5.2.3.1.
- 2. Egress Door Inspector: Submit documentation of compliance with NFPA 101, section 7.2.1.15.4.
- 3. Submit copy of DHI Fire and Egress Door Assembly Inspector (FDAI) certificate.

1.4 CLOSEOUT SUBMITTALS.

- A. Quality Standard Compliance Certificates: AWI Quality Certification Program certificates.
- B. Record Documents: For fire-rated doors, list of door numbers and applicable room name and number to which door accesses.

1.5 QUALITY ASSURANCE

- A. Fire-Rated Door Inspector Qualifications: Inspector for field quality control inspections of fire-rated door assemblies shall meet the qualifications set forth in NFPA 80, Section 5.2.3.1 and the following:
- B. Egress Door Inspector Qualifications: Inspector for field quality control inspections of egress door assemblies shall meet the qualifications set forth in NFPA 101, Section 7.2.1.15.4 and the following:

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Exterior Door Thermal Transmittance: Maximum whole fenestration product U-factor of 0.25, , according to AAMA 1503, ASTM E1423, or NFRC 100.
- B. Fire-Rated Wood Door and Frame Assemblies: Complying with NFPA 80 that are listed and labeled by a qualified testing agency acceptable to authorities having jurisdiction for fire-protection ratings and temperature-rise limits indicated on Drawings, based on testing at positive pressure according to UL 10C or NFPA 252.
 - 1. Oversize Fire-Rated Door Assemblies: For units exceeding sizes of tested assemblies, provide certification by a qualified testing agency that doors comply with standard construction requirements for tested and labeled fire-rated door assemblies except for size.
 - 2. Temperature-Rise Limit: At vertical exit enclosures and exit passageways, provide doors that have a maximum transmitted temperature end point of not more than 450 deg F above ambient after 30 minutes of standard fire-test exposure.
- C. Smoke- and Draft-Control Door Assemblies: Listed and labeled for smoke and draft control by a qualified testing agency acceptable to authorities having jurisdiction, based on testing according to UL 1784 and installed in compliance with NFPA 105.

2.2 MATERIALS

- A. Use only materials that comply with referenced standards and other requirements specified.
 - 1. Assemble exterior doors, including components, with wet-use adhesives complying with ASTM D5572 for finger joints and with ASTM D5751 for joints other than finger joints.
 - 2. Assemble interior doors, including components, with either dry-use or wet-use adhesives complying with ASTM D5572 for finger joints and with ASTM D5751 for joints other than finger joints.
- B. Panel Products: Any of the following unless otherwise indicated:
 - 1. Particleboard: ANSI A208.1, Grade M-2.
 - 2. Medium-density fiberboard (MDF), complying with ANSI A208.2, Grade 130.
 - 3. Hardboard complying with ANSI A135.4.
 - 4. Veneer-core plywood.
- C. Safety Glass: Provide products complying with testing requirements in 16 CFR 1201, for Category II materials, unless those of Category I are expressly indicated and permitted.

2.3 EXTERIOR STILE AND RAIL WOOD DOORS

- A. Exterior Stile and Rail Wood Doors:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Karona by JELD-WEN.
 - b. Masonite Architectural.
 - c. VT Industries Inc.
 - 2. Performance Grade:
 - a. WDMA I.S. 6A: Extra Heavy Duty or Heavy Duty.
 - b. Architectural Woodwork Standards: Custom.
 - 3. Panel Designs: As indicated on Drawings.
 - a. Do not modify intended aesthetic effects, as judged solely by Architect, except with Architect's approval.
 - b. If modifications are proposed, submit comprehensive explanatory data to Architect for review.
 - 4. Finish: Transparent or Opaque per Drawings.
 - 5. Wood Species and Cut for Transparent Finish: Species indicated on Drawings, plain sawed/sliced.
 - 6. Door Construction for Transparent Finish:

- a. Stile and Rail Construction:
 - 1) Clear lumber; may be edge glued for width. Select lumber for similarity of grain and color, and arrange for optimum match between adjacent pieces.
- b. Raised-Panel Construction:
 - 1) Clear lumber; edge glued for width. Select lumber for similarity of grain and color, and arrange for optimum match between adjacent pieces.
 - 2) Edge-glued, clear lumber; glued to both sides of a wood-based panel product. Select lumber for similarity of grain and color, and arrange for optimum match between adjacent pieces.
 - 3) Veneered, wood-based panel product with mitered, raised rims made from matching clear lumber.
 - 4) Veneered, shaped, wood-based panel product with veneer conforming to raised-panel shape.
- 7. Door Construction for Opaque Finish:
 - a. Stile and Rail Construction:
 - 1) Clear softwood; may be edge glued for width and finger jointed.
 - b. Raised-Panel Construction: As indicated on Drawings.
- 8. Stile and Rail Widths: As indicated on Drawings.
 - a. Stiles, Top and Intermediate Rails: As indicated on Drawings. .
 - b. Bottom Rails: As indicated on Drawings.
- 9. Raised-Panel Thickness: As indicated on Drawings.
- 10. Molding Profile (Sticking): As selected by Architect from manufacturer's full range.
- 11. Glass: Uncoated, clear, fully tempered float glass, 5.0 mm thick laminated glass made from two lites of 3.0-mm-thick annealed glass insulating-glass units made from two lites of 3.0-mm-thick, fully tempered glass with 1/4-inch interspace, complying with Section 08 80 00 "Glazing."
- 12. Mark, label, or otherwise identify stile and rail wood doors as complying with WDMA I.S. 6A and grade specified.

2.4 INTERIOR STILE AND RAIL WOOD DOORS

- A. Interior Stile and Rail Wood Doors:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ETO Doors Corp.
 - b. Karona by JELD-WEN.

- c. Masonite Architectural.
- d. VT Industries Inc.
- 2. Performance Grade:
 - a. WDMA I.S. 6A: Heavy Duty or Standard Duty.
 - b. Architectural Woodwork Standards: Custom.
- 3. Panel Designs: Indicated on Drawings. Do not modify intended aesthetic effects, as judged solely by Architect, except with Architect's approval. If modifications are proposed, submit comprehensive explanatory data to Architect for review.
- 4. Finish: As indicated on Drawings .
- 5. Wood Species and Cut for Transparent Finish: Species indicated on Drawings, plain sawed/sliced.
- 6. Door Construction for Transparent Finish:
 - a. Stile and Rail Construction:
 - 1) Clear lumber; may be edge glued for width. Select lumber for similarity of grain and color, and arrange for optimum match between adjacent pieces.
 - 2) Veneered, structural composite lumber. Select veneers for similarity of grain and color, and arrange for optimum match between adjacent pieces. Use veneers not less than 1/16 inch thick.
 - b. Raised-Panel Construction:
 - 1) Clear lumber; edge glued for width. Select lumber for similarity of grain and color, and arrange for optimum match between adjacent pieces.
 - 2) Edge-glued, clear lumber; glued to both sides of a wood-based panel product. Select lumber for similarity of grain and color, and arrange for optimum match between adjacent pieces.
 - 3) Veneered, wood-based panel product with mitered, raised rims made from matching clear lumber.
 - 4) Veneered, shaped, wood-based panel product with veneer conforming to raised-panel shape.
 - c. Flat-Panel Construction: Veneered, wood-based panel product.
- 7. Door Construction for Opaque Finish:
 - a. Stile and Rail Construction:
 - 1) Clear softwood; may be edge glued for width and finger jointed.
 - b. Raised-Panel Construction: Clear softwood lumber; edge glued for width
 - c. Flat-Panel Construction: Veneered, wood-based panel product.
- 8. Stile and Rail Widths: As indicated.
 - a. Stiles, Top and Intermediate Rails: As indicated on Drawings.

- b. Bottom Rails: As indicated on Drawings .
- 9. Raised-Panel Thickness: As indicated.
- 10. Flat-Panel Thickness: As indicated.
- 11. Molding Profile (Sticking): As selected by Architect from manufacturer's full range.
- 12. Glass: Uncoated, clear, fully tempered float glass, 5.0 mm thick laminated glass made from two lites of 3.0-mm-thick annealed glass Insert requirements, complying with Section 08 80 00 "Glazing."
- 13. Mark, label, or otherwise identify stile and rail wood doors as complying with WDMA I.S. 6A and grade specified.

2.5 INTERIOR FIRE-RATED STILE AND RAIL WOOD DOORS

- A. 20-Minute, Interior Fire-Rated Stile and Rail Wood Doors:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ETO Doors Corp.
 - b. Karona by JELD-WEN.
 - c. Masonite Architectural.
 - d. VT Industries Inc.
 - 2. Performance Grade:
 - a. WDMA I.S. 6A: Heavy Duty or Standard Duty.
 - b. Architectural Woodwork Standards: Custom.
 - 3. Panel Designs: Indicated on Drawings. Do not modify intended aesthetic effects, as judged solely by Architect, except with Architect's approval. If modifications are proposed, submit comprehensive explanatory data to Architect for review.
 - 4. Finish: Transparent Opaque.
 - 5. Wood Species and Cut for Transparent Finish: Idaho white, lodgepole, ponderosa, or sugar pine, plain sawed/sliced Douglas fir or western hemlock, quarter sawed/sliced (vertical grain) Red oak, quarter sawed/sliced stiles and rails, plain sawed/sliced panels Species indicated on Drawings, plain sawed/sliced Insert species and cut.
 - 6. Door Construction for Transparent Finish: 1-3/4-inch- thick stiles and rails and veneered flat panels not less than 5/8 inch thick raised panels not less than 1-1/8 inches thick.
 - a. Stile and Rail Construction: Veneered, structural composite lumber or veneered, edge- and end-glued clear lumber. Select veneers for similarity of grain and color, and arrange for optimum match between adjacent pieces. Use veneers not less than 1/16 inch thick.
 - b. Raised-Panel Construction: Veneered, shaped, wood-based panel product with veneer conforming to raised-panel shape.
 - c. Flat-Panel Construction: Veneered, wood-based panel product.

- d. Edge Construction for Fire-Rated Single Doors: Provide edge construction with intumescent seals concealed by outer stile. Comply with specified requirements for exposed edges.
- e. Edge Construction for Fire-Rated Pairs of Doors:
 - 1) Provide fire-retardant stiles that are listed and labeled for applications indicated without formed-steel edges and astragals. Provide stiles with concealed intumescent seals. Comply with specified requirements for exposed edges.
- 7. Door Construction for Opaque Finish: 1-3/4-inch- thick stiles and rails and veneered flat panels not less than 5/8 inch thick raised panels not less than 1-1/8 inches thick.
 - a. Stile and Rail Construction: Veneered, structural composite lumber or veneered edge- and end-glued lumber.
 - b. Raised-Panel Construction: Shaped medium-density fiberboard (MDF.)
 - c. Flat-Panel Construction: Veneered, wood-based panel product.
 - d. Edge Construction for Single Doors: Provide edge construction with intumescent seals concealed by outer stile. Comply with specified requirements for exposed edges.
 - e. Edge Construction for Fire-Rated Pairs of Doors:
 - 1) Provide fire-retardant stiles that are listed and labeled for applications indicated without formed-steel edges and astragals. Provide stiles with concealed intumescent seals. Comply with specified requirements for exposed edges.
- 8. Stile and Rail Widths: As indicated on Drawings.
 - a. Stiles, Top and Intermediate Rails: As indicated on Drawings .
 - b. Bottom Rails: As indicated on Drawings .
- 9. Molding Profile (Sticking): As selected by Architect from manufacturer's full range.
- 10. Mark, label, or otherwise identify stile and rail wood doors as complying with WDMA I.S. 6A and grade specified.
- B. 45-Minute, Interior Fire-Rated Stile and Rail Wood Doors: Fire-rated (45-minute rating) doors
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Karona by JELD-WEN.
 - b. Masonite Architectural.
 - c. VT Industries Inc.
 - 2. Performance Grade:
 - a. WDMA I.S. 6A: Heavy Duty orStandard Duty.
 - b. Architectural Woodwork Standards: Custom.

- 3. Panel Designs: Indicate on Drawings. Do not modify intended aesthetic effects, as judged solely by Architect, except with Architect's approval. If modifications are proposed, submit comprehensive explanatory data to Architect for review.
- 4. Finish: Transparent.
- 5. Wood Species and Cut for Transparent Finish: Species indicated on Drawings, plain sawed/sliced.
- 6. Interior Fire-Rated Door Construction: 1-3/4-inch- thick, edged and veneered mineral-core stiles and rails and 1-1/8-inch- thick, veneered mineral-core raised panels.
- 7. Edge Construction for Fire-Rated Single Doors: Provide edge construction with intumescent seals concealed by outer stile. Comply with specified requirements for exposed edges.
 - a. At hinge stiles, provide laminated-edge construction with improved screw-holding capability and split resistance. Comply with specified requirements for exposed edges.
 - 1) Screw-Holding Capability: 550 lbf according to WDMA T.M. 10.
- 8. Edge Construction for Fire-Rated Pairs of Doors:
 - a. Provide fire-retardant stiles that are listed and labeled for applications indicated without formed-steel edges and astragals. Provide stiles with concealed intumescent seals. Comply with specified requirements for exposed edges.
 - 1) At hinge stiles, provide laminated-edge construction with improved screw-holding capability and split resistance. Comply with specified requirements for exposed edges.
 - a) Screw-Holding Capability: 550 lbf according to WDMA T.M. 10.
 - b. Provide formed-steel edges and astragals with intumescent seals.
 - 1) At hinge stiles, provide laminated-edge construction with improved screw-holding capability and split resistance. Comply with specified requirements for exposed edges.
 - a) Screw-Holding Capability: 550 lbf according to WDMA T.M. 10.
 - 2) Finish steel edges and astragals with baked enamel.
 - 3) Finish steel edges and astragals to match door hardware (locksets or exit devices).
- 9. Stile and Rail Widths: As indicated.
 - a. Stiles, Top and Intermediate Rails: As indicated on Drawings.
 - b. Bottom Rails: As indicated on Drawings9 inches.
- 10. Molding Profile (Sticking): As selected by Architect from manufacturer's full range.

2.6 FIRE-RATED WOOD DOOR FRAMES

- A. Interior Frames:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Masonite Architectural.
 - 2. WDMA I.S. 6A Grade: Premium Custom.
 - 3. Wood Species and Cut: Match species and cut indicated for wood doors unless otherwise indicated.
 - 4. Wood Moisture Content: 5 to 10 percent.
 - 5. Profile: Flat Double rabbet.
 - 6. Construction: Solid lumber, fire-retardant particleboard, or fire-retardant medium density fiberboard (MDF) with veneered exposed surfaces and listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for fire ratings indicated on Drawings.

2.7 STILE AND RAIL WOOD DOOR FABRICATION

- A. Factory fit doors to suit frame-opening sizes indicated, with the following uniform clearances and bevels unless otherwise indicated:
 - 1. Clearances:
 - a. Provide 1/8 inch at heads, jambs, and between pairs of doors.
 - b. Provide 1/2 inch from bottom of door to top of decorative floor finish or covering.
 - c. Where threshold is shown on Drawings or scheduled, provide not more than 3/8 inch from bottom of door to top of threshold.
 - d. Comply with NFPA 80 requirements for fire-rated doors.
 - 2. Bevel non-fire-rated doors 1/8 inch in 2 inches at lock and hinge edges.
 - 3. Bevel fire-rated doors 1/8 inch in 2 inches on lock edge; trim stiles and rails only to extent permitted by labeling agency.
- B. Factory machine doors for hardware that is not surface applied.
 - 1. Locate hardware to comply with DHI-WDHS-3.
 - 2. Comply with final hardware schedules, door frame Shop Drawings, BHMA-156.115-W, and hardware templates.
 - 3. For doors scheduled to receive electrified locksets, provide factory-installed raceway and wiring to accommodate specified hardware.
 - 4. Coordinate measurements of hardware mortises in metal frames to verify dimensions and alignment before factory machining.
- C. Glazed Openings:

- 1. Trim openings indicated for glazing with solid-wood moldings, with one side removable. Miter wood moldings at corner joints.
- 2. Factory install glazing in doors, complying with Section 08 80 00 "Glazing." Install glass using manufacturer's standard elastomeric glazing sealant complying with ASTM C920. Secure glass in place with removable wood moldings. Miter wood moldings at corner joints.
- D. Exterior Doors: Factory treat exterior doors with water-repellent preservative after fabrication has been completed but before shop priming factory finishing.
 - 1. Comply with WDMA I.S. 4.
 - 2. Flash top of outswinging doors with manufacturer's standard metal flashing.

2.8 FACTORY PRIMING

A. Doors for Opaque Finish: Shop prime faces, all four edges, edges of cutouts, and mortises with one coat of wood primer specified in Section 09 91 13 "Exterior Painting." Section 09 91 23 "Interior Painting."

2.9 FACTORY FINISHING

- A. Comply with referenced quality standard for factory finishing.
 - 1. Complete fabrication, including fitting doors for openings and machining for hardware that is not surface applied, before finishing.
 - 2. Finish faces, all four edges, edges of cutouts, and mortises.
 - 3. Stains and fillers may be omitted on top and bottom edges, edges of cutouts, and mortises.
- B. Factory finish doors.
- C. Transparent Finish:
 - 1. Architectural Woodwork Standards WDMA I.S. 6A Grade: Premium Custom.
 - 2. Finish:
 - a. Architectural Woodwork Standards System 5, varnish, conversion.
 - 3. Staining: Match Architect's sample As selected by Architect from manufacturer's full range None required.
 - 4. Effect: Open-grain finish Filled finish Semifilled finish, produced by applying an additional finish coat to partially fill the wood pores.
 - 5. Sheen: Satin Semigloss.
- D. Opaque Finish:
 - 1. Architectural Woodwork Standards WDMA I.S. 6A Grade: Premium Custom.
 - 2. Finish:

- a. Architectural Woodwork Standards System 5, Varnish, Conversion.
- 3. Color: Match Architect's sample As selected by Architect from manufacturer's full range.
- 4. Sheen: Satin Semigloss Gloss.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Hardware: For installation, see Section 08 71 00 "Door Hardware."
- B. Install doors and frames to comply with manufacturer's written instructions and referenced quality standard, and as indicated.
 - 1. Install fire-rated door frames according to NFPA 80.
 - a. Install frames level, plumb, true, and straight.
 - 1) Shim as required with concealed shims. Install level and plumb to a tolerance of 1/8 inch in 96 inches.
 - b. Anchor frames to anchors or blocking built in or directly attached to substrates.
 - 1) Secure with countersunk, concealed fasteners and blind nailing.
 - 2) Use fine finishing nails or finishing screws for exposed fastening, countersunk and filled flush with woodwork.
 - c. For shop-finished items, use filler matching finish of items being installed.
 - 2. Install fire-rated doors according to NFPA 80.
 - 3. Install smoke- and draft-control doors according to NFPA 105.
- C. Job-Fitted Doors:
 - 1. Align and fit doors in frames with uniform clearances and bevels as indicated below.
 - a. Do not trim stiles and rails in excess of limits set by manufacturer or permitted for fire-rated doors.
 - 2. Machine doors for hardware.
 - 3. Seal edges of doors, edges of cutouts, and mortises after fitting and machining.
 - 4. Clearances:
 - a. Provide 1/8 inch at heads, jambs, and between pairs of doors.
 - b. Provide 1/8 inch from bottom of door to top of decorative floor finish or covering unless otherwise indicated on Drawings.
 - c. Where threshold is shown on Drawings or scheduled, provide 1/4 inch from bottom of door to top of threshold unless otherwise indicated.

- d. Comply with NFPA 80 for fire-rated doors.
- 5. Bevel non-fire-rated doors 1/8 inch in 2 inches at lock and hinge edges.
- 6. Bevel fire-rated doors 1/8 inch in 2 inches on lock edge; trim stiles and rails only to extent permitted by labeling agency.
- D. Factory-Fitted Doors: Align in frames for uniform clearance at each edge.
- E. Factory- Finished Doors: Restore finish before installation if fitting or machining is required at Project site.

3.2 FIELD QUALITY CONTROL

- A. Inspection Agency: Engage a qualified inspector to perform inspections and to furnish reports to Architect.
- B. Inspections:
 - 1. Provide inspection of installed Work through AWI's Quality Certification Program, certifying that woodwork, including installation, complies with requirements of the Architectural Woodwork Standards for the specified grade.
 - 2. Fire-Rated Door Inspections: Inspect each fire-rated door in accordance with NFPA 80, Section 5.2.
 - 3. Egress Door Inspections: Inspect each door equipped with panic hardware, each door equipped with fire exit hardware, each door located in an exit enclosure, each electrically controlled egress door, and each door equipped with special locking arrangements according to NFPA 101, Section 7.2.1.15.
- C. Repair or remove and replace installations where inspections indicate that they do not comply with specified requirements.
- D. Reinspect repaired or replaced installations to determine if replaced or repaired door installations comply with specified requirements.
- E. Prepare and submit separate inspection report for each fire-rated door assembly indicating compliance with each item listed in NFPA 80 and NFPA 101.

3.3 ADJUSTING

- A. Operation: Rehang or replace doors that do not swing or operate freely.
- B. Finished Doors: Replace doors that are damaged or do not comply with requirements. Doors may be repaired or refinished if Work complies with requirements and shows no evidence of repair or refinishing.

END OF SECTION 08 14 33

SECTION 08 41 13 - ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Exterior Exterior and interior storefront framing.
 - 2. Exterior Exterior and interior manual-swing entrance doors and door-frame units.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Include plans, elevations, sections, full-size details, and attachments to other work.
 - 1. Show connection to and continuity with adjacent thermal, weather, air, and vapor barriers.
- C. Samples: For each exposed finish required.
- D. Entrance Door Hardware Schedule: Prepared by or under supervision of supplier, detailing fabrication and assembly of entrance door hardware, as well as procedures and diagrams.
- E. Delegated-Design Submittal: For aluminum-framed entrances and storefronts indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.3 CLOSEOUT SUBMITTALS

A. Maintenance data.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.
- B. Testing Agency Qualifications: Qualified according to ASTM E 699 for testing indicated .

- C. Product Options: Information on Drawings and in Specifications establishes requirements for aesthetic effects and performance characteristics of assemblies. Aesthetic effects are indicated by dimensions, arrangements, alignment, and profiles of components and assemblies as they relate to sightlines, to one another, and to adjoining construction.
 - 1. Do not change intended aesthetic effects, as judged solely by Architect, except with Architect's approval. If changes are proposed, submit comprehensive explanatory data to Architect for review.

1.5 WARRANTY

- A. Special Warranty: Installer agrees to repair or replace components of aluminum-framed entrances and storefronts that do not comply with requirements or that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.
- B. Special Finish Warranty: Standard form in which manufacturer agrees to repair finishes or replace aluminum that shows evidence of deterioration of factory-applied finishes within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 01 40 00 "Quality Requirements," to design aluminum-framed entrances and storefronts.
- B. General Performance: Comply with performance requirements specified, as determined by testing of aluminum-framed entrances and storefronts representing those indicated for this Project without failure due to defective manufacture, fabrication, installation, or other defects in construction.
 - 1. Aluminum-framed entrances and storefronts shall withstand movements of supporting structure including, but not limited to, story drift, twist, column shortening, long-term creep, and deflection from uniformly distributed and concentrated live loads.
 - 2. Failure also includes the following:
 - a. Thermal stresses transferring to building structure.
 - b. Glass breakage.
 - c. Noise or vibration created by wind and thermal and structural movements.
 - d. Loosening or weakening of fasteners, attachments, and other components.
 - e. Failure of operating units.

- C. Structural Loads:
 - 1. Wind Loads: Design for wind loads in accordance with the 2014 Indiana Building Code and the parameters listed on structural drawings.
- D. Deflection of Framing Members: At design wind pressure, as follows:
 - 1. Deflection Normal to Wall Plane: Limited to 1/175 of clear span for spans up to 13 feet 6 inches and to 1/240 of clear span plus 1/4 inch for spans greater than 13 feet 6 inches or an amount that restricts edge deflection of individual glazing lites to 3/4 inch, whichever is less.
 - 2. Deflection Parallel to Glazing Plane: Limited to 1/360 of clear span or 1/8 inch, whichever is smaller.
 - a. Operable Units: Provide a minimum 1/16-inch clearance between framing members and operable units.
- E. Structural: Test according to ASTM E 330 as follows:
 - 1. When tested at 150 percent of positive and negative wind-load design pressures, assemblies, including anchorage, do not evidence material failures, structural distress, or permanent deformation of main framing members exceeding 0.2 percent of span.
 - 2. Test Durations: As required by design wind velocity, but not less than 10 seconds.
- F. Air Infiltration: Test according to ASTM E 283 for infiltration as follows:
 - 1. Fixed Framing and Glass Area:
 - a. Maximum air leakage of 0.06 cfm/sq. ft. at a static-air-pressure differential of 6.24 lbf/sq. ft..
 - 2. Entrance Doors:
 - a. Pair of Doors: Maximum air leakage of 1.0 cfm/sq. ft. at a static-air-pressure differential of 1.57 lbf/sq. ft..
 - b. Single Doors: Maximum air leakage of 0.5 cfm/sq. ft. at a static-air-pressure differential of 1.57 lbf/sq. ft..
- G. Water Penetration under Static Pressure: Test according to ASTM E 331 as follows:
 - 1. No evidence of water penetration through fixed glazing and framing areas when tested according to a minimum static-air-pressure differential of 20 percent of positive wind-load design pressure, but not less than 6.24 lbf/sq. ft.
- H. Thermal Movements: Allow for thermal movements resulting from ambient and surface temperature changes:

Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

1.

2.2 MANUFACTURERS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide Kawneer TriFab VG 451T (451 at interior) or compatible product by one of the following (Please note a 2" sightline is required even at the interior frames, provide glazing adaptors as required):
 - 1. Kawneer North America.
 - 2. TRACO.
 - 3. United States Aluminum.
 - 4. YKK AP America Inc.

2.3 FRAMING

- A. Framing Members: Manufacturer's extruded- or formed-aluminum framing members of thickness required and reinforced as required to support imposed loads.
 - 1. Construction: Thermally broken 2 inch x 4-1/2 inch.
 - 2. Glazing System: Retained mechanically with gaskets on four sides.
 - 3. Glazing Plane: Center.
 - 4. Finish: Black #29 anodic finish.
 - 5. Fabrication Method: Field-fabricated stick system.
- B. Backer Plates: Manufacturer's standard, continuous backer plates for framing members, if not integral, where framing abuts adjacent construction.
- C. Brackets and Reinforcements: Manufacturer's standard high-strength aluminum with nonstaining, nonferrous shims for aligning system components.
- D. Materials:
 - 1. Aluminum: Alloy and temper recommended by manufacturer for type of use and finish indicated.
 - a. Sheet and Plate: ASTM B 209.
 - b. Extruded Bars, Rods, Profiles, and Tubes: ASTM B 221.
 - c. Extruded Structural Pipe and Tubes: ASTM B 429/B 429M.
 - d. Structural Profiles: ASTM B 308/B 308M.

2.4 ENTRANCE DOOR SYSTEMS

A. Entrance Doors: Manufacturer's standard glazed entrance doors for manual-swing operation.

- 1. Door Construction: 1-3/4-inch overall thickness, with minimum 0.125-inch- thick, extruded-aluminum tubular rail and stile members. Mechanically fasten corners with reinforcing brackets that are deeply penetrated and fillet welded or that incorporate concealed tie rods.
 - a. Thermal Construction: High-performance plastic connectors separate aluminum members exposed to the exterior from members exposed to the interior.
- 2. Door Design: As indicated.
- 3. Glazing Stops and Gaskets: Square, snap-on, extruded-aluminum stops and preformed gaskets.
 - a. Provide nonremovable glazing stops on outside of door.

2.5 ENTRANCE DOOR HARDWARE

A. Entrance Door Hardware: Refer to Section 08 71 10 "Door Hardware ."

2.6 GLAZING

- A. Glazing: Comply with Section 08 80 00 "Glazing."
- B. Glazing Gaskets: Manufacturer's standard sealed-corner pressure-glazing system of black, resilient elastomeric glazing gaskets, setting blocks, and shims or spacers.
- C. Glazing Sealants: As recommended by manufacturer.

2.7 FABRICATION

- A. Form or extrude aluminum shapes before finishing.
- B. Weld in concealed locations to greatest extent possible to minimize distortion or discoloration of finish. Remove weld spatter and welding oxides from exposed surfaces by descaling or grinding.
- C. Fabricate components that, when assembled, have the following characteristics:
 - 1. Profiles that are sharp, straight, and free of defects or deformations.
 - 2. Accurately fitted joints with ends coped or mitered.
 - 3. Physical and thermal isolation of glazing from framing members.
 - 4. Accommodations for thermal and mechanical movements of glazing and framing to maintain required glazing edge clearances.
 - 5. Provisions for field replacement of glazing from exterior.
 - 6. Fasteners, anchors, and connection devices that are concealed from view to greatest extent possible.

- D. Mechanically Glazed Framing Members: Fabricate for flush glazing without projecting stops.
- E. Entrance Door Frames: Reinforce as required to support loads imposed by door operation and for installing entrance door hardware.
- F. Entrance Doors: Reinforce doors as required for installing entrance door hardware.
- G. Entrance Door Hardware Installation: Factory install entrance door hardware to the greatest extent possible. Cut, drill, and tap for factory-installed entrance door hardware before applying finishes.
- H. After fabrication, clearly mark components to identify their locations in Project according to Shop Drawings.

2.8 ALUMINUM FINISHES

- A. Clear Anodic Finish: AAMA 611, AA-M12C22A41, Class I, 0.018 mm AA-M12C22A31, Class II, 0.010 mm or thicker.
- B. Color Anodic Finish: AAMA 611, AA-M12C22A42/A44, Class I, 0.018 mm or thicker.
 - 1. Color: Black.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - 1. Comply with manufacturer's written instructions.
 - 2. Do not install damaged components.
 - 3. Fit joints to produce hairline joints free of burrs and distortion.
 - 4. Rigidly secure nonmovement joints.
 - 5. Install anchors with separators and isolators to prevent metal corrosion and electrolytic deterioration and to prevent impeding movement of moving joints.
 - 6. Seal perimeter and other joints watertight unless otherwise indicated.
- B. Metal Protection:
 - 1. Where aluminum is in contact with dissimilar metals, protect against galvanic action by painting contact surfaces with materials recommended by manufacturer for this purpose or by installing nonconductive spacers.
 - 2. Where aluminum is in contact with concrete or masonry, protect against corrosion by painting contact surfaces with bituminous paint.
- C. Set continuous sill members and flashing in full sealant bed as specified in Section 07 92 00 "Joint Sealants" to produce weathertight installation.
- D. Install components plumb and true in alignment with established lines and grades.
- E. Install operable units level and plumb, securely anchored, and without distortion. Adjust weather-stripping contact and hardware movement to produce proper operation.
- F. Install glazing as specified in Section 08 80 00 "Glazing."
- G. Entrance Doors: Install doors to produce smooth operation and tight fit at contact points.
 - 1. Exterior Doors: Install to produce weathertight enclosure and tight fit at weather stripping.
 - 2. Field-Installed Entrance Door Hardware: Install surface-mounted entrance door hardware according to entrance door hardware manufacturers' written instructions using concealed fasteners to greatest extent possible.

END OF SECTION 08 41 13

SECTION 08 44 13 - GLAZED ALUMINUM CURTAIN WALLS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes conventionally glazed aluminum curtain walls installed as stick assemblies.

1.2 PERFORMANCE REQUIREMENTS

- A. General Performance: Comply with performance requirements specified, as determined by testing of manufacturer's standard glazed aluminum curtain walls representing those indicated for this Project without failure due to defective manufacture, fabrication, installation, or other defects in construction.
 - 1. Glazed aluminum curtain walls shall withstand movements of supporting structure indicated on Drawings including, but not limited to, story drift, twist, column shortening, long-term creep, and deflection from uniformly distributed and concentrated live loads.
 - 2. Failure also includes the following:
 - a. Thermal stresses transferring to building structure.
 - b. Glass breakage.
 - c. Noise or vibration created by wind and thermal and structural movements.
 - d. Loosening or weakening of fasteners, attachments, and other components.
 - e. Failure of operating units.
- B. Delegated Design: Design glazed aluminum curtain walls, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
 - 1. Wind Loads: Design for wind loads in accordance with the 2014 Indiana Building Code and the parameters listed on structural drawings.
 - 2. As indicated on Drawings..
- C. Structural-Test Performance: Test according to ASTM E 330 as follows:
 - 1. When tested at 150 percent of positive and negative wind-load design pressures, assemblies, including anchorage, do not evidence material failures, structural distress, and permanent deformation of main framing members exceeding 0.2 percent of span.
 - 2. Test Durations: 10 seconds.
- D. Deflection of Framing Members: At design wind pressure, as follows:

- 1. Deflection Normal to Wall Plane: Limited to 1/175 of clear span for spans up to 13 feet 6 inchesand to 1/240 of clear span plus 1/4 inch for spans greater than 13 feet 6 inches or an amount that restricts edge deflection of individual glazing lites to 3/4 inch, whichever is less.
- 2. Deflection Parallel to Glazing Plane: Limited to L/360 of clear span or 1/8 inch, whichever is smaller.
- 3. Cantilever Deflection: Where framing members overhang an anchor point, limit deflection to two times the length of cantilevered member, divided by 175.
- E. Water Penetration under Static Pressure: No evidence of water penetration through fixed glazing and framing areas when tested according to ASTM E 331 at a minimum static-air-pressure differential of 20 percent of positive wind-load design pressure, but not less than 10 lbf/sq. ft..
- F. Energy Performance: Glazed aluminum curtain wall shall have certified and labeled energy performance ratings in accordance with NFRC.
- G. Thermal Transmittance (U-factor): Fixed glazing and framing areas shall have U-factor of not more than 0.45 Btu/sq. ft. x h x deg F as determined according to NFRC 100.
 - 1. Solar Heat Gain Coefficient: Fixed glazing and framing areas shall have a solar heat gain coefficient of no greater than 0.40 as determined according to NFRC 200.
 - 2. Air Infiltration: Maximum air leakage through fixed glazing and framing areas of 0.30 cfm/sq. ft. of fixed wall area as determined according to ASTM E 283 at a minimum static-air-pressure differential of 1.57 lbf/sq. ft..

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: For glazed aluminum curtain walls. Include plans, elevations, sections, full-size details, and attachments to other work.
 - 1. Include details of provisions for assembly expansion and contraction and for draining moisture occurring within the assembly to the exterior.
 - 2. Include full-size isometric details of each vertical-to-horizontal intersection of glazed aluminum curtain walls, showing the following:
 - a. Joinery, including concealed welds.
 - b. Anchorage.
 - c. Expansion provisions.
 - d. Glazing.
 - e. Flashing and drainage.
- C. Samples: For each type of exposed finish required.

D. Delegated-Design Submittal: For glazed aluminum curtain walls indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer.
- B. Energy Performance Certificates: For glazed aluminum curtain walls, accessories, and components, from manufacturer.
- C. Product test reports.
- D. Field quality-control reports.
- E. Warranties: Sample of special warranties.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance data.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.
- B. Testing Agency Qualifications: Qualified according to ASTM E 699 for testing indicated.
- C. Product Options: Information on Drawings and in Specifications establishes requirements for aesthetic effects and performance characteristics of assemblies. Aesthetic effects are indicated by dimensions, arrangements, alignment, and profiles of components and assemblies as they relate to sightlines, to one another, and to adjoining construction.
- D. Preinstallation Conference: Conduct conference at Project site.

1.7 WARRANTY

- A. Special Assembly Warranty: Standard form in which Installer agrees to repair or replace components of glazed aluminum curtain walls that do not comply with requirements or that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: 10 years from date of Substantial Completion.

- B. Special Finish Warranty: Standard form in which manufacturer agrees to repair finishes or replace aluminum that shows evidence of deterioration of factory-applied finishes within specified warranty period.
 - 1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide Kawneer 1600 Wall System 2 or comparable product by one of the following:
 - 1. EFCO Corporation.
 - 2. Kawneer North America; an Alcoa company.
 - 3. TRACO.
 - 4. Tubelite.
 - 5. YKK AP America Inc.

2.2 MATERIALS

- A. Aluminum: Alloy and temper recommended by manufacturer for type of use and finish indicated.
 - 1. Sheet and Plate: ASTM B 209.
 - 2. Extruded Bars, Rods, Profiles, and Tubes: ASTM B 221.
 - 3. Extruded Structural Pipe and Tubes: ASTM B 429.
 - 4. Structural Profiles: ASTM B 308/B 308M.
 - 5. Welding Rods and Bare Electrodes: AWS A5.10/A5.10M.
- B. Steel Reinforcement: With manufacturer's standard zinc-rich, corrosion-resistant primer complying with SSPC-PS Guide No. 12.00; applied immediately after surface preparation and pretreatment. Select surface preparation methods according to recommendations in SSPC-SP COM and prepare surfaces according to applicable SSPC standard.
 - 1. Structural Shapes, Plates, and Bars: ASTM A 36/A 36M.
 - 2. Cold-Rolled Sheet and Strip: ASTM A 1008/A 1008M.
 - 3. Hot-Rolled Sheet and Strip: ASTM A 1011/A 1011M.

2.3 FRAMING

- A. Framing Members: Manufacturer's standard extruded- or formed-aluminum framing members of thickness required and reinforced as required to support imposed loads.
 - 1. Construction: Thermally broken.

- 2. Glazing System: Retained mechanically with gaskets on four sides.
- 3. Glazing Plane: Front.
- B. Brackets and Reinforcements: Manufacturer's standard high-strength aluminum with nonstaining, nonferrous shims for aligning system components.
- C. Fasteners and Accessories: Manufacturer's standard corrosion-resistant, nonstaining, nonbleeding fasteners and accessories compatible with adjacent materials.
 - 1. Use self-locking devices where fasteners are subject to loosening or turning out from thermal and structural movements, wind loads, or vibration.
 - 2. Reinforce members as required to receive fastener threads.
 - 3. Use exposed fasteners with countersunk Phillips screw heads, finished to match framing system.
- D. Anchors: Three-way adjustable anchors with minimum adjustment of 1 inch that accommodate fabrication and installation tolerances in material and finish compatible with adjoining materials and recommended by manufacturer.
 - 1. Concrete and Masonry Inserts: Hot-dip galvanized cast-iron, malleable-iron, or steel inserts complying with ASTM A 123/A 123M or ASTM A 153/A 153M requirements.
- E. Concealed Flashing: Manufacturer's standard corrosion-resistant, nonstaining, nonbleeding flashing compatible with adjacent materials.
- F. Framing Sealants: Manufacturer's standard sealants.

2.4 GLAZING

- A. Glazing: Comply with Section 08 80 00 "Glazing."
- B. Glazing Gaskets: Manufacturer's standard sealed-corner pressure-glazing system of black, resilient elastomeric glazing gaskets, setting blocks, and shims or spacers.
- C. Glazing Sealants: As recommended by manufacturer.

2.5 ACCESSORY MATERIALS

A. Bituminous Paint: Cold-applied asphalt-mastic paint complying with SSPC-Paint 12 requirements except containing no asbestos, formulated for 30-mil thickness per coat.

2.6 FABRICATION

A. Form or extrude aluminum shapes before finishing.

- B. Weld in concealed locations to greatest extent possible to minimize distortion or discoloration of finish. Remove weld spatter and welding oxides from exposed surfaces by descaling or grinding.
- C. Fabricate components that, when assembled, have the following characteristics:
 - 1. Profiles that are sharp, straight, and free of defects or deformations.
 - 2. Accurately fitted joints with ends coped or mitered.
 - 3. Physical and thermal isolation of glazing from framing members.
 - 4. Accommodations for thermal and mechanical movements of glazing and framing to maintain required glazing edge clearances.
 - 5. Provisions for field replacement of glazing from exterior.
 - 6. Fasteners, anchors, and connection devices that are concealed from view to greatest extent possible.
- D. Fabricate components that, when assembled, have the following characteristics:
 - 1. Internal guttering system or other means to drain water passing joints, condensation occurring within framing members, and moisture migrating within glazed aluminum curtain wall to exterior.
 - 2. Pressure-equalized system or double barrier design with primary air and vapor barrier at interior side of glazed aluminum curtain wall and secondary seal weeped and vented to exterior.
- E. Factory-Assembled Frame Units:
 - 1. Rigidly secure nonmovement joints.
 - 2. Seal joints watertight unless otherwise indicated.
 - 3. Install glazing to comply with requirements in Section 08 80 00 "Glazing."
- F. After fabrication, clearly mark components to identify their locations in Project according to Shop Drawings.

2.7 ALUMINUM FINISHES

- A. Color Anodic Finish: AAMA 611, [AA-M12C22A42/A44, Class I, 0.018 mm] [AA-M12C22A32/A34, Class II, 0.010 mm] or thicker.
 - 1. Color: Black As selected by Architect from full range of industry colors and color densities.

PART 3 - EXECUTION

3.1 INSTALLATION

A. General:

- 1. Comply with manufacturer's written instructions.
- 2. Do not install damaged components.
- 3. Fit joints to produce hairline joints free of burrs and distortion.
- 4. Rigidly secure nonmovement joints.
- 5. Install anchors with separators and isolators to prevent metal corrosion and electrolytic deterioration and to prevent impeding movement of moving joints.
- 6. Weld components in concealed locations to minimize distortion or discoloration of finish. Protect glazing surfaces from welding.
- 7. Seal joints watertight unless otherwise indicated.
- B. Metal Protection:
 - 1. Where aluminum will contact dissimilar metals, protect against galvanic action by painting contact surfaces with primer or by applying sealant or tape or installing nonconductive spacers as recommended by manufacturer for this purpose.
 - 2. Where aluminum will contact concrete or masonry, protect against corrosion by painting contact surfaces with bituminous paint.
- C. Install components to drain water passing joints, condensation occurring within framing members, and moisture migrating within glazed aluminum curtain wall to exterior.
- D. Install components plumb and true in alignment with established lines and grades.
- E. Install glazing as specified in Section 08 80 00 "Glazing."

3.2 ERECTION TOLERANCES

- A. Erection Tolerances: Install glazed aluminum curtain walls to comply with the following maximum tolerances:
 - 1. Plumb: 1/8 inch in 10 feet; 1/4 inch in 40 feet.
 - 2. Level: 1/8 inch in 20 feet; 1/4 inch in 40 feet.
 - 3. Alignment:
 - a. Where surfaces abut in line or are separated by reveal or protruding element up to 1/2 inch wide, limit offset from true alignment to 1/16 inch.
 - b. Where surfaces are separated by reveal or protruding element from 1/2 to 1 inch wide, limit offset from true alignment to 1/8 inch.
 - c. Where surfaces are separated by reveal or protruding element of 1 inchwide or more, limit offset from true alignment to 1/4 inch.
 - 4. Location: Limit variation from plane to 1/8 inch in 12 feet; 1/2 inch over total length.

3.3 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

- B. Testing Services: Testing and inspecting of representative areas of glazed aluminum curtain walls shall take place as installation proceeds to determine compliance of installed assemblies with specified requirements.
 - 1. Air Infiltration: Areas shall be tested for air leakage of 1.5 times the rate specified for laboratory testing in "Performance Requirements" Article, but not more than 0.50 cfm/sq. ft., of fixed wall area when tested according to ASTM E 783 at a minimum static-air-pressure differential of 6.24 lbf/sq. ft..
 - a. Test Area: One bay wide, but not less than 20 feet, by one story of glazed aluminum curtain wall.
 - b. Perform a minimum of two tests in areas as directed by Architect.
 - c. Perform tests in each test area as directed by Architect. Perform at least three tests, prior to 10, 35, and 70 percent completion.
 - 2. Water Penetration: Areas shall be tested according to ASTM E 1105 at a minimum uniform static-air-pressure differential of 0.67 times the static-air-pressure differential specified for laboratory testing in "Performance Requirements" Article, but not less than 6.24 lbf/sq. ft., and shall not evidence water penetration.
 - a. Test Area: One bay wide, but not less than 20 feet, by one story of glazed aluminum curtain wall.
 - b. Perform a minimum of two tests in areas as directed by Architect.
 - 3. Water Spray Test: Before installation of interior finishes has begun, areas designated by Architect shall be tested according to AAMA 501.2 and shall not evidence water penetration.
 - a. Test Area: A minimum area of 75 feet by two story of glazed aluminum curtain wall.
- C. Glazed aluminum curtain walls will be considered defective if they do not pass tests and inspections.
- D. Prepare test and inspection reports.

END OF SECTION 08 44 13

SECTION 08 52 00 - WOOD WINDOWS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes aluminum-clad wood windows.

1.2 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Include plans, elevations, sections, hardware, accessories, insect screens, operational clearances, and details of installation, including anchor, flashing, and sealant installation.
- C. Samples: For each exposed product and for each color specified.

1.4 INFORMATIONAL SUBMITTALS

- A. Product test reports.
- B. Sample warranties.

1.5 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace wood windows that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period:
 - a. Window: 20 years from date of Substantial Completion.
 - b. Glazing Units: 20 years from date of Substantial Completion.
 - c. Aluminum-Cladding Finish: 20 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 WINDOW PERFORMANCE REQUIREMENTS

- A. Product Standard: Comply with AAMA/WDMA/CSA 101/I.S.2/A440 for definitions and minimum standards of performance, materials, components, accessories, and fabrication unless more stringent requirements are indicated.
 - 1. Window Certification: WDMA certified with label attached to each window.
- B. Performance Class and Grade: AAMA/WDMA/CSA 101/I.S.2/A440 as follows:
 - 1. Minimum Performance Class: CW.
 - 2. Minimum Performance Grade: 30.
- C. Thermal Transmittance: NFRC 100 maximum whole-window U-factor of 0.30 Btu/sq. ft. x h x deg F.
- D. Solar Heat-Gain Coefficient (SHGC): NFRC 200 maximum whole-window SHGC of 0.30.
- E. Windborne-Debris Impact Resistance: Passes ASTM E 1886 missile-impact and cyclic-pressure tests in accordance with ASTM E 1996 for Wind Zone 4 for basic protection.

2.2 WOOD WINDOWS

- A. Aluminum-Clad Wood Windows:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Weather Shield Mfg., Inc., or approved equal.
- B. Operating Types: Double-hung.
- C. Frames and Sashes: Fine-grained wood lumber complying with AAMA/WDMA/CSA 101/I.S.2/A440; kiln dried to a moisture content of not more than 12 percent at time of fabrication; free of visible finger joints, blue stain, knots, pitch pockets, and surface checks larger than 1/32 inch deep by 2 inches wide; water-repellent preservative treated.
 - 1. Exterior Finish: Aluminum-clad wood.
 - a. Aluminum Finish: Manufacturer's standard high-performance finish.
 - b. Color: As selected by Architect from manufacturer's full range.
 - 2. Interior Finish: Unfinished Manufacturer's standard stain-and-varnish finish.
 - a. Exposed Unfinished Wood Surfaces: Pine.

- D. Insulating-Glass Units: ASTM E 2190.
 - 1. Glass: ASTM C 1036, Type 1, Class 1, q3.
 - a. Tint: Clear.
 - b. Kind: Fully tempered .
 - 2. Lites: Two.
 - 3. Filling: Fill space between glass lites with argon.
 - 4. Low-E Coating: Pyrolytic on second surface.
- E. Glazing System: Manufacturer's standard factory-glazing system that produces weathertight seal.
- F. Hardware, General: Provide manufacturer's standard corrosion-resistant hardware sized to accommodate sash weight and dimensions.
 - 1. Exposed Hardware Color and Finish: As selected by Architect from manufacturer's full range.
- G. Hung Window Hardware:
 - 1. Counterbalancing Mechanism: AAMA 902.
 - 2. Locks and Latches: Operated from the inside only.
 - 3. Tilt Hardware: Releasing tilt latch allows sash to pivot about horizontal axis.
- H. Weather Stripping: Provide full-perimeter weather stripping for each operable sash unless otherwise indicated.
- I. Fasteners: Noncorrosive and compatible with window members, trim, hardware, anchors, and other components.
 - 1. Exposed Fasteners: Do not use exposed fasteners to greatest extent possible. For application of hardware, use fasteners that match finish hardware being fastened.

2.3 ACCESSORIES

- A. Dividers (False Muntins): Provide divider grilles in designs indicated for each sash lite.
 - 1. Quantity and Type: Two per sash, permanently located at exterior and interior lites Insert requirements.
 - 2. Material: Aluminum: Exterior, Pine: Interior.
 - 3. Pattern: As indicated on Drawings.
 - 4. Profile: As selected by Architect from manufacturer's full range.
 - 5. Color: As selected by Architect from manufacturer's full range.

2.4 INSECT SCREENS

- A. General: Fabricate insect screens to integrate with window frame. Provide screen for each operable exterior sash. Screen wickets are not permitted.
 - 1. Type and Location: Full, outside for double-hung sashes.
- B. Aluminum Frames: Complying with SMA 1004 or SMA 1201.
 - 1. Finish for Exterior Screens: Matching color and finish of cladding.
- C. Glass-Fiber Mesh Fabric: 18-by-14 or 18-by-16 mesh of PVC-coated, glass-fiber threads; woven and fused to form a fabric mesh resistant to corrosion, shrinkage, stretch, impact damage, and weather deterioration. Comply with ASTM D 3656/D 3656M.
 - 1. Mesh Color: Manufacturer's standard.

2.5 FABRICATION

- A. Fabricate wood windows in sizes indicated. Include a complete system for installing and anchoring windows.
- B. Glaze wood windows in the factory.
- C. Weather strip each operable sash to provide weathertight installation.
- D. Complete fabrication, assembly, finishing, hardware application, and other work in the factory to greatest extent possible. Disassemble components only as necessary for shipment and installation. Allow for scribing, trimming, and fitting at Project site.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with manufacturer's written instructions for installing windows, hardware, accessories, and other components. For installation procedures and requirements not addressed in manufacturer's written instructions, comply with installation requirements in ASTM E 2112.
- B. Install windows level, plumb, square, true to line, without distortion, anchored securely in place to structural support, and in proper relation to wall flashing and other adjacent construction to produce weathertight construction.
- C. Adjust operating sashes and hardware for a tight fit at contact points and weather stripping for smooth operation and weathertight closure.

- D. Clean exposed surfaces immediately after installing windows. Remove excess sealants, glazing materials, dirt, and other substances.
- E. Remove and replace sashes if glass has been broken, chipped, cracked, abraded, or damaged during construction period.

END OF SECTION 08 52 00

SECTION 08 53 13 - VINYL WINDOWS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes vinyl-framed windows.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Include plans, elevations, sections, hardware, accessories, insect screens, operational clearances, and details of installation, including anchor, flashing, and sealant installation.
- C. Product Schedule: For vinyl windows. Use same designations indicated on Drawings.

1.3 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace vinyl windows that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period:
 - a. Window: 10 years from date of Substantial Completion.
 - b. Glazing Units: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide Anderson Silver Line 2390 Series Sliding Window or comparable product by one of the following:
 - 1. CertainTeed Corporation.
 - 2. Crestline Windows and Doors; SNE Enterprises, Inc.
 - 3. JELD-WEN, Inc.
 - 4. Pella Corporation.
 - 5. Quaker Windows Products Co.
 - 6. Thermal Windows, Inc.

2.2 WINDOW PERFORMANCE REQUIREMENTS

- A. Product Standard: AAMA/WDMA/CSA 101/I.S.2/A440.
 - 1. Minimum Performance Class: R.
 - 2. Minimum Performance Grade: 20.
- B. Thermal Transmittance: NFRC 100 maximum whole-window U-factor of 0.32 Btu/sq. ft. x h x deg F .
- C. Solar Heat-Gain Coefficient (SHGC): NFRC 200 maximum whole-window SHGC of 0.29.

2.3 VINYL WINDOWS

- A. Operating Types: Sliding.
- B. Frames and Sashes: Impact-resistant, UV-stabilized PVC complying with AAMA/WDMA/CSA 101/I.S.2/A440.
 - 1. Finish: Integral color, White with Dark Bronze painted Exterior.
 - 2. Gypsum Board Returns: Provide at interior face of frame.
- C. Glass: Clear annealed glass, ASTM C 1036, Type 1, Class 1, q3.
 - 1. Kind: Fully tempered .
- D. Insulating-Glass Units: ASTM E 2190.
 - 1. Glass: ASTM C 1036, Type 1, Class 1, q3.
 - a. Tint: Clear.
 - b. Kind: Fully tempered .
 - 2. Lites: Two.
 - 3. Filling: Fill space between glass lites with air.
 - 4. Low-E Coating: Manufacturer's standard to meet Performance Criteria.
- E. Glazing System: Manufacturer's standard factory-glazing system that produces weathertight seal.
- F. Hardware, General: Manufacturer's standard corrosion-resistant material sized to accommodate sash weight and dimensions.
 - 1. Exposed Hardware Color and Finish: White.
- G. Hung Window Hardware:
 - 1. Counterbalancing Mechanism: AAMA 902.

- 2. Locks and Latches: Operated from the inside only.
- 3. Tilt Hardware: Releasing tilt latch allows sash to pivot about horizontal axis.
- H. Weather Stripping: Provide full-perimeter weather stripping for each operable sash unless otherwise indicated.
- I. Fasteners: Noncorrosive and compatible with window members, trim, hardware, anchors, and other components.
 - 1. Exposed Fasteners: Do not use exposed fasteners to the greatest extent possible. For application of hardware, use fasteners that match finish hardware being fastened.

2.4 INSECT SCREENS

- A. General: Fabricate insect screens to fully integrate with window frame. Provide screen for each operable exterior sash. Screen wickets are not permitted.
 - 1. Type and Location: Full, outside for double-hung sashes.
- B. Aluminum Frames: Complying with SMA 1004 or SMA 1201.
 - 1. Finish for Exterior Screens: Matching color and finish of cladding.
- C. Glass-Fiber Mesh Fabric: 18-by-14 or 18-by-16 mesh complying with ASTM D 3656.
 - 1. Mesh Color: Manufacturer's standard.

2.5 FABRICATION

- A. Fabricate vinyl windows in sizes indicated. Include a complete system for assembling components and anchoring windows.
- B. Glaze vinyl windows in the factory.
- C. Weather strip each operable sash to provide weathertight installation.
- D. Provide mullions and cover plates, compatible with window units, complete with anchors for support to structure and installation of window units. Allow for erection tolerances and provide for movement of window units due to thermal expansion and building deflections. Provide mullions and cover plates capable of withstanding design wind loads of window units. Provide manufacturer's standard finish to match window units.
- E. Mount hardware through double walls of vinyl extrusions or provide corrosion-resistant reinforcement.
- F. Complete fabrication, assembly, finishing, hardware application, and other work in the factory to greatest extent possible. Disassemble components only as necessary for shipment and installation. Allow for scribing, trimming, and fitting at Project site.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with manufacturer's written instructions for installing windows, hardware, accessories, and other components. For installation procedures and requirements not addressed in manufacturer's written instructions, comply with installation requirements in ASTM E 2112.
- B. Install windows level, plumb, square, true to line, without distortion, anchored securely in place to structural support, and in proper relation to wall flashing and other adjacent construction to produce weathertight construction.
- C. Adjust operating sashes and hardware for a tight fit at contact points and weather stripping for smooth operation and weathertight closure.
- D. Clean exposed surfaces immediately after installing windows. Remove excess sealants, glazing materials, dirt, and other substances.
- E. Remove and replace sashes if glass has been broken, chipped, cracked, abraded, or damaged during construction period.

END OF SECTION 08 53 13

SECTION 08 71 00 - DOOR HARDWARE

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Mechanical door hardware for the following:
 - a. Swinging doors.
 - b. Sliding doors.
 - c. Folding doors.
 - 2. Cylinders for door hardware specified in other Sections.
 - 3. Electrified door hardware.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For electrified door hardware.
 - 1. Include diagrams for power, signal, and control wiring.
 - 2. Include details of interface of electrified door hardware and building safety and security systems.
- C. Samples: For each exposed product in each finish specified.
- D. Door hardware schedule.
- E. Keying schedule.

1.3 CLOSEOUT SUBMITTALS

A. Maintenance data.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: Supplier of products and an employer of workers trained and approved by product manufacturers and of an Architectural Hardware Consultant who is available during the course of the Work to consult Contractor, Architect, and Owner about door hardware and keying.
 - 1. Scheduling Responsibility: Preparation of door hardware and keying schedule.

- 2. Engineering Responsibility: Preparation of data for electrified door hardware, including Shop Drawings, based on testing and engineering analysis of manufacturer's standard units in assemblies similar to those indicated for this Project.
- B. Architectural Hardware Consultant Qualifications: A person who is experienced in providing consulting services for door hardware installations that are comparable in material, design, and extent to that indicated for this Project and who is currently certified by DHI as an Architectural Hardware Consultant (AHC) and an Electrified Hardware Consultant (EHC) and/or an Architectural Openings Consultant (AOC).

1.5 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace components of door hardware that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Three years from date of Substantial Completion unless otherwise indicated below:
 - a. ElectromagneticandDelayed-Egress Locks: Five years from date of Substantial Completion.
 - b. Exit Devices: Two years from date of Substantial Completion.
 - c. Manual Closers: 10 years from date of Substantial Completion.
 - d. Concealed Floor Closers: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Fire-Rated Door Assemblies: Where fire-rated doors are indicated, provide door hardware complying with NFPA 80 that is listed and labeled by a qualified testing agency, for fire-protection ratings indicated, based on testing at positive pressure in accordance with NFPA 252 or UL 10C.
- B. Smoke- and Draft-Control Door Assemblies: Where smoke- and draft-control door assemblies are required, provide door hardware that complies with requirements of assemblies tested in accordance with UL 1784 and installed in compliance with NFPA 105.
 - 1. Air Leakage Rate: Maximum air leakage of 0.3 cfm/sq. ft. at the tested pressure differential of 0.3-inch wg of water.
- C. Electrified Door Hardware: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Means of Egress Doors: Latches do not require more than 15 lbf to release the latch. Locks do not require use of a key, tool, or special knowledge for operation.
- E. Accessibility Requirements: For door hardware on doors in an accessible route, comply with the USDOJ's "2010 ADA Standards for Accessible Design".

2.2 MANUFACTURERS

- A. Basis-of-Design : Subject to construction phase coordination and Final Hardware Schedule review and approval, provide complete and fully operational door hardware assemblies equal to the following product standards:
 - 1. Typical Project Door Locks and Latch-sets:
 - a. Schlage ND-series
 - b. Grade 1 Commercial
 - c. Levers: 'Athens' ; rose trim, concealed mounting screws
 - d. Cylinders: Schlage 6 pin or similar pending Owner master key coordination
 - e. Finish BHMA A156.18 / 626 Satin Chromium
 - 2. Typical Apartment Entry Door Locks and Latch-sets:
 - a. Schlage ND-series; B-Series Deadbolt
 - b. Grade 1 Commercial
 - c. Levers: 'Athens'; rose trim, concealed mounting screws
 - d. Cylinders: Schlage 6 pin or similar pending Owner master key coordination
 - e. Finish BHMA A156.18 / 626 Satin Chromium
 - 3. Typical Apartment Interior Doors
 - a. Schlage S-Series
 - b. Grade 2 Light Commercial / Heavy Duty Residential
 - c. Levers: 'Jupiter': rose trim, concealed mounting screws
 - d. Finish: BHMA A156.18 / 626 Satin Chromium
 - 4. Butts and Hinges: Ives
 - 5. Wall Stops: Ives
 - 6. Overhead Closers:
 - 7. Push, Pulls: Ives
 - 8. Overhead Stops: Glynn-Johnson
 - 9. Exit Devices: Von Duprin (88 Series Historic District)

LCN

- 10. Electric Strike: Von Duprin
- 11. Automatic Door Closers: LCN (Sr Swing)

2.3 DOOR HARDWARE COMPONENT REQUIREMENTS

- 1. Hinges: BHMA A156.1. Provide template-produced hinges for hinges installed on hollow-metal doors and hollow-metal frames.
- 2. Mechanical Locks and Latches
 - a. Lock Functions: As indicated in Drawings
 - b. Lock Throw: Minimum 1/2-inch latch-bolt throw: minimum 1-inch for deadbolts.
 - c. Lock Backset: 2-3/4 inches unless otherwise required.

- 3. Strikes: Provide manufacturer's standard strike complying with requirements indicated for applicable lock or latch and with strike box and curved lip extended to protect frame; finish to match lock or latch.
- 4. Bored Locks: BHMA A156.2; Series 4000
- 5. Lock Cylinders: Tumbler type, brass or bronze, stainless steel, or nickel silver.
 - a. Standard Lock Cylinders: BHMA A156.5; permanent cores; face finished to match lockset.
- 6. Keying System: Complying with guidelines in BHMA A156.28, appendix.
- 7. Surface Closers: BHMA A156.4; rack-and-pinion hydraulic type with adjustable sweep and latch speeds controlled by key-operated valves and forged-steel main arm. Comply with manufacturer's written instructions for size of door closers depending on size of door, and anticipated frequency of use. Provide factor-sized closers, adjustable to meet field conditions and requirements for opening force.
- 8. Wall-Mounted Stops: BHMA A156.16.
 - a. Floor-mounted stops are not permitted.
- 9. Overhead Stops: BHMA A156.8.
 - a. Include where plan conditions prevent suitable wall-stop installation.
- 10. Auxiliary Hardware: BHMA A156.16
 - a. Provide a minimum of three (3) silencers per single door frame.
- 11. Finishes: BHMA A156.18
 - a. Provide equivalent overall match to 626 Satin Chromium as applicable.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Mounting Heights: Mount door hardware units at heights to comply with the following unless otherwise indicated or required to comply with governing regulations.
 - 1. Standard Steel Doors and Frames: ANSI/SDI A250.8.
 - 2. Custom Steel Doors and Frames: HMMA 831.
 - 3. Wood Doors: DHI's "Recommended Locations for Architectural Hardware for Wood Flush Doors."
- B. Install each door hardware item to comply with manufacturer's written instructions. Where cutting and fitting are required to install door hardware onto or into surfaces that are later to be painted or finished in another way, coordinate removal, storage, and reinstallation of surface protective trim units with finishing work. Do not install surface-mounted items until finishes have been completed on substrates involved.

- C. Hinges: Install types and in quantities indicated in door hardware schedule, but not fewer than the number recommended by manufacturer for application indicated or one hinge for every 30 inches of door height, whichever is more stringent, unless other equivalent means of support for door, such as spring hinges or pivots, are provided.
- D. Intermediate Offset Pivots: Where offset pivots are indicated, provide intermediate offset pivots in quantities indicated in door hardware schedule, but not fewer than one intermediate offset pivot per door and one additional intermediate offset pivot for every 30 inches of door height greater than 90 inches.
- E. Lock Cylinders: Install construction cores to secure building and areas during construction period.
 - 1. Replace construction cores with permanent cores as directed by Owner.
 - 2. Furnish permanent cores to Owner for installation.
- F. Key Control Cabinet: Tag keys and place them on markers and hooks in key control system cabinet, as determined by final keying schedule.
- G. Boxed Power Supplies: Locate power supplies as indicated or, if not indicated, above accessible ceilings. Verify location with Architect.
 - 1. Configuration: Provide one power supply for each door opening with electrified door hardware.
- H. Thresholds: Set thresholds for exterior doors and other doors indicated in full bed of sealant complying with requirements specified in Section 07 92 00 "Joint Sealants."
- I. Stops: Provide floor stops for doors unless wall or other type stops are indicated in door hardware schedule. Do not mount floor stops where they will impede traffic.
- J. Perimeter Gasketing: Apply to head and jamb, forming seal between door and frame.
 - 1. Do not notch perimeter gasketing to install other surface-applied hardware.
- K. Meeting Stile Gasketing: Fasten to meeting stiles, forming seal when doors are closed.
- L. Door Bottoms: Apply to bottom of door, forming seal with threshold when door is closed.

3.2 ADJUSTING

A. Adjust and check each operating item of door hardware and each door to ensure proper operation or function of every unit. Replace units that cannot be adjusted to operate as intended. Adjust door control devices to compensate for final operation of heating and ventilating equipment and to comply with referenced accessibility requirements.

END OF SECTION 08 71 00

DOOR HARDWARE

SECTION 08 80 00 - GLAZING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes glazing for the following products and applications, including those specified in other Sections where glazing requirements are specified by reference to this Section:
 - 1. Windows.
 - 2. Doors.
 - 3. Glazed curtain walls.
 - 4. Storefront framing.
 - 5. Glazed entrances.

1.2 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Design glass, including comprehensive engineering analysis according to ASTM E 1300 and 2009 International Energy Code.
 - 1. Design Wind Pressures: Design for wind loads in accordance with the 2014 Indiana Building Code and the parameters listed on structural drawings.

1.3 ACTION SUBMITTALS

- A. Product Data: For each glass product and glazing material indicated.
- B. Glass Samples: For each type of glass product other than clear monolithic vision glass; 12 inches square.
- C. Glazing Schedule: List glass types and thicknesses for each size opening and location. Use same designations indicated on Drawings.
- D. Delegated-Design Submittal: For glass indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.4 QUALITY ASSURANCE

- A. Glazing Publications: Comply with published recommendations of glass product manufacturers and organizations below, unless more stringent requirements are indicated. Refer to these publications for glazing terms not otherwise defined in this Section or in referenced standards.
 - 1. IGMA Publication for Insulating Glass: SIGMA TM-3000, "North American Glazing Guidelines for Sealed Insulating Glass Units for Commercial and Residential Use."

- B. Safety Glazing Labeling: Where safety glazing labeling is indicated, permanently mark glazing with certification label of the manufacturer. Label shall indicate manufacturer's name, type of glass, thickness, and safety glazing standard with which glass complies.
- C. Fire-Protection-Rated Glazing Labeling: Permanently mark fire-protection-rated glazing with certification label of a testing agency acceptable to authorities having jurisdiction. Label shall indicate manufacturer's name, test standard, whether glazing is for use in fire doors or other openings, whether or not glazing passes hose-stream test, whether or not glazing has a temperature rise rating of 450 deg F, and the fire-resistance rating in minutes.
- D. Insulating-Glass Certification Program: Permanently marked either on spacers or on at least one component lite of units with appropriate certification label of IGCC.

1.5 WARRANTY

- A. Manufacturer's Special Warranty for Coated-Glass Products: Manufacturer's standard form in which coated-glass manufacturer agrees to replace coated-glass units that deteriorate within specified warranty period. Deterioration of coated glass is defined as defects developed from normal use that are not attributed to glass breakage or to maintaining and cleaning coated glass contrary to manufacturer's written instructions. Defects include peeling, cracking, and other indications of deterioration in coating.
 - 1. Warranty Period: 10 years from date of Substantial Completion.
- B. Manufacturer's Special Warranty on Laminated Glass: Manufacturer's standard form in which laminated-glass manufacturer agrees to replace laminated-glass units that deteriorate within specified warranty period. Deterioration of laminated glass is defined as defects developed from normal use that are not attributed to glass breakage or to maintaining and cleaning laminated glass contrary to manufacturer's written instructions. Defects include edge separation, delamination materially obstructing vision through glass, and blemishes exceeding those allowed by referenced laminated-glass standard.
 - 1. Warranty Period: Five years from date of Substantial Completion.
- C. Manufacturer's Special Warranty on Insulating Glass: Manufacturer's standard form in which insulating-glass manufacturer agrees to replace insulating-glass units that deteriorate within specified warranty period. Deterioration of insulating glass is defined as failure of hermetic seal under normal use that is not attributed to glass breakage or to maintaining and cleaning insulating glass contrary to manufacturer's written instructions. Evidence of failure is the obstruction of vision by dust, moisture, or film on interior surfaces of glass.
 - 1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GLASS PRODUCTS, GENERAL

- A. Thickness: Where glass thickness is indicated, it is a minimum. Provide glass lites in thicknesses as needed to comply with requirements indicated.
- B. Strength: Where float glass is indicated, provide annealed float glass, Kind HS heat-treated float glass, or Kind FT heat-treated float glass as needed to comply with "Performance Requirements" Article. Where heat-strengthened glass is indicated, provide Kind HS heat-treated float glass or Kind FT heat-treated float glass as needed to comply with "Performance Requirements" Article. Where fully tempered glass is indicated, provide Kind FT heat-treated float glass.
- C. Thermal and Optical Performance Properties: Provide glass with performance properties specified, as indicated in manufacturer's published test data, based on procedures indicated below:
 - 1. U-Factors: Center-of-glazing values, according to NFRC 100 and based on LBL's WINDOW 5.2 computer program, expressed as Btu/sq. ft. x h x deg F.
 - 2. Solar Heat-Gain Coefficient and Visible Transmittance: Center-of-glazing values, according to NFRC 200 and based on LBL's WINDOW 5.2 computer program.
 - 3. Visible Reflectance: Center-of-glazing values, according to NFRC 300.

2.2 GLASS PRODUCTS

- A. Float Glass: ASTM C 1036, Type I, Quality-Q3, Class I (clear) unless otherwise indicated.
- B. Heat-Treated Float Glass: ASTM C 1048; Type I; Quality-Q3; Class I (clear) unless otherwise indicated; of kind and condition indicated.

2.3 INSULATING GLASS

- A. Manufacturers: Basis-of-Design products listed below. Please submit comparable product samples for consideration.
 - 1. Clear: Guardian SunGuard SuperNeutral 68 on Clear
 - 2. Spandrel: Guardian SuperNeutral 68 with Ceramic Frit on #4
- B. Insulating-Glass Units: Factory-assembled units consisting of sealed lites of glass separated by a dehydrated interspace, qualified according to ASTM E 2190, and complying with other requirements specified.
 - 1. Sealing System: Dual seal.
 - 2. Spacer: Aluminum with black, color anodic finish.

2.4 GLAZING GASKETS

- A. Dense Compression Gaskets: Molded or extruded gaskets of profile and hardness required to maintain watertight seal, made from one of the following:
 - 1. Neoprene complying with ASTM C 864.
 - 2. EPDM complying with ASTM C 864.
 - 3. Silicone complying with ASTM C 1115.
 - 4. Thermoplastic polyolefin rubber complying with ASTM C 1115.
- B. Soft Compression Gaskets: Extruded or molded, closed-cell, integral-skinned thermoplastic polyolefin rubber gaskets complying with ASTM C 509, Type II, black; of profile and hardness required to maintain watertight seal.
 - 1. Application: Use where soft compression gaskets will be compressed by inserting dense compression gaskets on opposite side of glazing or pressure applied by means of pressure-glazing stops on opposite side of glazing.

2.5 GLAZING SEALANTS

- A. General:
 - 1. Compatibility: Provide glazing sealants that are compatible with one another and with other materials they will contact, including glass products, seals of insulating-glass units, and glazing channel substrates, under conditions of service and application, as demonstrated by sealant manufacturer based on testing and field experience.
 - 2. Suitability: Comply with sealant and glass manufacturers' written instructions for selecting glazing sealants suitable for applications indicated and for conditions existing at time of installation.
 - 3. Sealants used inside the weatherproofing system, shall have a VOC content of not more than 250 g/L when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 4. Colors of Exposed Glazing Sealants: As selected by Architect from manufacturer's full range.
- B. Glazing Sealant: Neutral-curing silicone glazing sealant complying with ASTM C 920, Type S, Grade NS, Class 100/50, Use NT.

2.6 GLAZING TAPES

- A. Back-Bedding Mastic Glazing Tapes: Preformed, butyl-based, 100 percent solids elastomeric tape; nonstaining and nonmigrating in contact with nonporous surfaces; with or without spacer rod as recommended in writing by tape and glass manufacturers for application indicated; and complying with ASTM C 1281 and AAMA 800 for products indicated below:
 - 1. AAMA 806.3 tape, for glazing applications in which tape is subject to continuous pressure.

- 2. AAMA 807.3 tape, for glazing applications in which tape is not subject to continuous pressure.
- B. Expanded Cellular Glazing Tapes: Closed-cell, PVC foam tapes; factory coated with adhesive on both surfaces; and complying with AAMA 800 for the following types:
 - 1. AAMA 810.1, Type 1, for glazing applications in which tape acts as the primary sealant.
 - 2. AAMA 810.1, Type 2, for glazing applications in which tape is used in combination with a full bead of liquid sealant.

2.7 MISCELLANEOUS GLAZING MATERIALS

- A. Cleaners, Primers, and Sealers: Types recommended by sealant or gasket manufacturer.
- B. Setting Blocks: Elastomeric material with a Shore, Type A durometer hardness of 85, plus or minus 5.
- C. Spacers: Elastomeric blocks or continuous extrusions of hardness required by glass manufacturer to maintain glass lites in place for installation indicated.
- D. Edge Blocks: Elastomeric material of hardness needed to limit glass lateral movement (side walking).
- E. Cylindrical Glazing Sealant Backing: ASTM C 1330, Type O (open-cell material), of size and density to control glazing sealant depth and otherwise produce optimum glazing sealant performance.
- F. Perimeter Insulation for Fire-Resistive Glazing: Product that is approved by testing agency that listed and labeled fire-resistant glazing product with which it is used for application and fire-protection rating indicated.

2.8 MONOLITHIC-GLASS TYPES

- A. Glass Type 1 Clear fully tempered float glass.
 - 1. Location: Replacement of interior historic transoms and/or interior historic door lites.
 - 2. Thickness: min. 3/6 "
 - 3. Verify existing assembly to confirm thickness.
 - 4. Provide safety glazing labeling.
- B. Glass Type 2 : Clear fully tempered float glass.
 - 1. Location: New interior door lites
 - 2. Thickness: min. 1/4"
 - 3. Provide safety glazing labeling.

2.9 INSULATING-GLASS TYPES

- A. Glass Type 3: Insulated Clear Glazing Basis-of-Design: Guardian SunGuard SuperNeutral 68 on Clear:
 - 1. Locations: New exterior curtain wall, storefront, and associated doors and locations as indicated on the drawings.
 - 2. Overall Unit Thickness: 1 inch Thickness
 - 3. Outdoor Lite: 1/4" 2-SunGuard SN 68
 - 4. Interspace Content: 1/2" 10% Air 90% Argon
 - 5. Indoor Lite: 1/4" Guardian Clear Glass
 - 6. Visible Light Transmittance: 68 percent.
 - 7. Winter Nighttime U-Factor: 0.245.
 - 8. Summer Daytime U-Factor: 0.220.
 - 9. Solar Heat Gain Coefficient: 0.37.Assembly Maximum U-Value: 0.45
 - 10. Assembly Maximum SHGC: 0.40 maximum.
- B. Glass Type 6: Insulating spandrel glass.
 - 1. Location: At curtainwall locations near building floor levels, and as indicated on Drawings.
 - 2. Overall Unit Thickness: 1 inch.
 - 3. Thickness of Each Glass Lite: 6.0 mm (1/4").
 - 4. Outdoor Lite: 1/4" SunGuard SN 68 on Clear IG Coating on #2 fully tempered .
 - 5. Interspace Content: 1/2" Air.
 - 6. Indoor Lite: 1/4" Clear float glass with Ceramic frit on #4.
 - 7. Coating Location: Fourth surface.

PART 3 - EXECUTION

3.1 GLAZING, GENERAL

- A. Comply with combined written instructions of manufacturers of glass, sealants, gaskets, and other glazing materials, unless more stringent requirements are indicated, including those in referenced glazing publications.
- B. Adjust glazing channel dimensions as required by Project conditions during installation to provide necessary bite on glass, minimum edge and face clearances, and adequate sealant thicknesses, with reasonable tolerances.
- C. Protect glass edges from damage during handling and installation. Remove damaged glass from Project site and legally dispose of off Project site. Damaged glass is glass with edge damage or other imperfections that, when installed, could weaken glass and impair performance and appearance.

- D. Apply primers to joint surfaces where required for adhesion of sealants, as determined by preconstruction testing.
- E. Install setting blocks in sill rabbets, sized and located to comply with referenced glazing publications, unless otherwise required by glass manufacturer. Set blocks in thin course of compatible sealant suitable for heel bead.
- F. Do not exceed edge pressures stipulated by glass manufacturers for installing glass lites.
- G. Provide spacers for glass lites where length plus width is larger than 50 inches.
- H. Provide edge blocking where indicated or needed to prevent glass lites from moving sideways in glazing channel, as recommended in writing by glass manufacturer and according to requirements in referenced glazing publications.

3.2 TAPE GLAZING

- A. Position tapes on fixed stops so that, when compressed by glass, their exposed edges are flush with or protrude slightly above sightline of stops.
- B. Install tapes continuously, but not necessarily in one continuous length. Do not stretch tapes to make them fit opening.
- C. Cover vertical framing joints by applying tapes to heads and sills first and then to jambs. Cover horizontal framing joints by applying tapes to jambs and then to heads and sills.
- D. Place joints in tapes at corners of opening with adjoining lengths butted together, not lapped. Seal joints in tapes with compatible sealant approved by tape manufacturer.
- E. Apply heel bead of elastomeric sealant.
- F. Center glass lites in openings on setting blocks and press firmly against tape by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings.
- G. Apply cap bead of elastomeric sealant over exposed edge of tape.

3.3 GASKET GLAZING (DRY)

- A. Cut compression gaskets to lengths recommended by gasket manufacturer to fit openings exactly, with allowance for stretch during installation.
- B. Insert soft compression gasket between glass and frame or fixed stop so it is securely in place with joints miter cut and bonded together at corners.

- C. Installation with Drive-in Wedge Gaskets: Center glass lites in openings on setting blocks and press firmly against soft compression gasket by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings. Compress gaskets to produce a weathertight seal without developing bending stresses in glass. Seal gasket joints with sealant recommended by gasket manufacturer.
- D. Installation with Pressure-Glazing Stops: Center glass lites in openings on setting blocks and press firmly against soft compression gasket. Install dense compression gaskets and pressure-glazing stops, applying pressure uniformly to compression gaskets. Compress gaskets to produce a weathertight seal without developing bending stresses in glass. Seal gasket joints with sealant recommended by gasket manufacturer.
- E. Install gaskets so they protrude past face of glazing stops.

3.4 SEALANT GLAZING (WET)

- A. Install continuous spacers, or spacers combined with cylindrical sealant backing, between glass lites and glazing stops to maintain glass face clearances and to prevent sealant from extruding into glass channel and blocking weep systems until sealants cure. Secure spacers or spacers and backings in place and in position to control depth of installed sealant relative to edge clearance for optimum sealant performance.
- B. Force sealants into glazing channels to eliminate voids and to ensure complete wetting or bond of sealant to glass and channel surfaces.
- C. Tool exposed surfaces of sealants to provide a substantial wash away from glass.

3.5 CLEANING AND PROTECTION

- A. Protect exterior glass from damage immediately after installation by attaching crossed streamers to framing held away from glass. Do not apply markers to glass surface. Remove nonpermanent labels and clean surfaces.
- B. Protect glass from contact with contaminating substances resulting from construction operations. If, despite such protection, contaminating substances do come into contact with glass, remove substances immediately as recommended in writing by glass manufacturer.
- C. Examine glass surfaces adjacent to or below exterior concrete and other masonry surfaces at frequent intervals during construction, but not less than once a month, for buildup of dirt, scum, alkaline deposits, or stains; remove as recommended in writing by glass manufacturer.
- D. Remove and replace glass that is broken, chipped, cracked, or abraded or that is damaged from natural causes, accidents, and vandalism, during construction period.

END OF SECTION 08 80 00

SECTION 09 22 16 - NON-STRUCTURAL METAL FRAMING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Non-load-bearing steel framing systems for furring.
 - 2. Suspension systems for interior ceilings and soffits.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.3 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of code-compliance certification for studs and tracks.

1.4 QUALITY ASSURANCE

A. Code-Compliance Certification of Studs and Tracks: Provide documentation that framing members are certified according to the product-certification program of the Steel Framing Industry Association.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Test-Response Characteristics: For fire-resistance-rated assemblies that incorporate non-load-bearing steel framing, provide materials and construction identical to those tested in assembly indicated, according to ASTM E 119 by an independent testing agency.

2.2 FRAMING SYSTEMS

- A. Hat-Shaped, Rigid Furring Channels: ASTM C 645.
 - 1. Minimum Base-Metal Thickness: As indicated on Drawings 0.0179 inch.
 - 2. Depth: As indicated on Drawings.

- B. Cold-Rolled Furring Channels: 0.053-inch uncoated-steel thickness, with minimum 1/2-inchwide flanges.
 - 1. Depth: As indicated on Drawings.
 - 2. Furring Brackets: Adjustable, corrugated-edge-type steel sheet with minimum uncoated-steel thickness of 0.0329 inch.
 - 3. Tie Wire: ASTM A 641/A 641M, Class 1 zinc coating, soft temper, 0.062-inch- diameter wire, or double strand of 0.048-inch- diameter wire.

2.3 SUSPENSION SYSTEMS

- A. System: Equal to USG Drywall Suspension System.
- B. Tie Wire: ASTM A641/A 641M, Class 1 zinc coating, soft temper, 0.062-inch- diameter wire, or double strand of 0.048-inch- diameter wire.
- C. Wire Hangers: ASTM A 641/A 641M, Class 1 zinc coating, soft temper, 0.16 inch in diameter.

2.4 AUXILIARY MATERIALS

- A. General: Provide auxiliary materials that comply with referenced installation standards.
 - 1. Fasteners for Steel Framing: Of type, material, size, corrosion resistance, holding power, and other properties required to fasten steel members to substrates.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Installation Standard: ASTM C 754.
 - 1. Gypsum Board Assemblies: Also comply with requirements in ASTM C 840 that apply to framing installation.
- B. Install framing and accessories plumb, square, and true to line, with connections securely fastened.
- C. Do not bridge building control and expansion joints with non-load-bearing steel framing members. Frame both sides of joints independently.

3.2 INSTALLING FRAMED ASSEMBLIES

A. Install framing system components according to spacings indicated, but not greater than spacings required by referenced installation standards for assembly types.

- B. Direct Furring:
 - 1. Attach to concrete or masonry with stub nails, screws designed for masonry attachment, or powder-driven fasteners spaced 16 inches o.c.
- C. Installation Tolerance: Install each framing member so fastening surfaces vary not more than 1/8 inch from the plane formed by faces of adjacent framing.

3.3 INSTALLING CEILING SUSPENSION SYSTEMS

- A. Install suspension system components according to spacings indicated, but not greater than spacings required by referenced installation standards for assembly types.
- B. Isolate suspension systems from building structure where they abut or are penetrated by building structure to prevent transfer of loading imposed by structural movement.
- C. Suspend hangers from building structure as follows:
 - 1. Install hangers plumb and free from contact with insulation or other objects within ceiling plenum that are not part of supporting structural or suspension system.
 - a. Splay hangers only where required to miss obstructions and offset resulting horizontal forces by bracing, countersplaying, or other equally effective means.
 - 2. Where width of ducts and other construction within ceiling plenum produces hanger spacings that interfere with locations of hangers required to support standard suspension system members, install supplemental suspension members and hangers in the form of trapezes or equivalent devices.
 - a. Size supplemental suspension members and hangers to support ceiling loads within performance limits established by referenced installation standards.
 - 3. Wire Hangers: Secure by looping and wire tying, either directly to structures or to inserts, eye screws, or other devices and fasteners that are secure and appropriate for substrate, and in a manner that will not cause hangers to deteriorate or otherwise fail.
 - 4. Do not attach hangers to steel roof deck.
 - 5. Do not attach hangers to permanent metal forms. Furnish cast-in-place hanger inserts that extend through forms.
 - 6. Do not attach hangers to rolled-in hanger tabs of composite steel floor deck.
 - 7. Do not connect or suspend steel framing from ducts, pipes, or conduit.
- D. Installation Tolerances: Install suspension systems that are level to within 1/8 inch in 12 feet measured lengthwise on each member that will receive finishes and transversely between parallel members that will receive finishes.

END OF SECTION 09 22 16

SECTION 09 29 00 - GYPSUM BOARD

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Interior gypsum board.
 - 2. Tile backing panels.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Resistance-Rated Assemblies: For fire-resistance-rated assemblies, provide materials and construction identical to those tested in assembly indicated according to ASTM E 119 by an independent testing agency.

2.2 GYPSUM BOARD, GENERAL

A. Size: Provide maximum lengths and widths available that will minimize joints in each area and that correspond with support system indicated.

2.3 INTERIOR GYPSUM BOARD

- A. Gypsum Board, Type X: ASTM C1396/C 1396M.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. CertainTeed Corporation.
 - b. Georgia-Pacific Building Products.
 - c. National Gypsum Company.
 - d. USG.
 - 2. Thickness: 5/8 inchor as indicated in the drawings.
 - 3. Long Edges: Tapered.

2.4 TILE BACKING PANELS

- A. Cementitious Backer Units: ANSI A118.9 and ASTM C 1288 or ASTM C 1325, with manufacturer's standard edges.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. CertainTeed Corporation.
 - b. National Gypsum Company.
 - c. USG.
 - 2. Thickness: 5/8 inch.
 - 3. Mold Resistance: ASTM D 3273, score of 10 as rated according to ASTM D 3274.

2.5 TRIM ACCESSORIES

- A. Interior Trim: ASTM C1047.
 - 1. Material: Galvanized or aluminum-coated steel sheet, rolled zinc, plastic, or paper-faced galvanized-steel sheet .
 - 2. Shapes:
 - a. Cornerbead.
 - b. LC-Bead: J-shaped; exposed long flange receives joint compound.
 - c. L-Bead: L-shaped; exposed long flange receives joint compound.
 - d. U-Bead: J-shaped; exposed short flange does not receive joint compound.
 - e. Expansion (control) joint.

2.6 JOINT TREATMENT MATERIALS

- A. General: Comply with ASTM C475/C 475M.
- B. Joint Tape:
 - 1. Interior Gypsum Board: Paper.
 - 2. Tile Backing Panels: As recommended by panel manufacturer.
- C. Joint Compound for Interior Gypsum Board: For each coat, use formulation that is compatible with other compounds applied on previous or for successive coats.
 - 1. Prefilling: At open joints, rounded or beveled panel edges, and damaged surface areas, use setting-type taping compound.
 - 2. Embedding and First Coat: For embedding tape and first coat on joints, fasteners, and trim flanges, use drying-type, all-purpose compound.
 - a. Use setting-type compound for installing paper-faced metal trim accessories.
- 3. Fill Coat: For second coat, use drying-type, all-purpose compound.
- 4. Finish Coat: For third coat, use drying-type, all-purpose compound.
- 5. Skim Coat: For final coat of Level 5 finish, use setting-type, sandable topping compound.
- D. Joint Compound for Tile Backing Panels:
 - 1. Cementitious Backer Units: As recommended by backer unit manufacturer.

2.7 AUXILIARY MATERIALS

- A. General: Provide auxiliary materials that comply with referenced installation standards and manufacturer's written instructions.
- B. Laminating Adhesive: Adhesive or joint compound recommended for directly adhering gypsum panels to continuous substrate.
- C. Steel Drill Screws: ASTM C1002 unless otherwise indicated.
 - 1. Use screws complying with ASTM C954 for fastening panels to steel members from 0.033 to 0.112 inch thick.
 - 2. For fastening cementitious backer units, use screws of type and size recommended by panel manufacturer.
- D. Sound-Attenuation Blankets: ASTM C 665, Type I (blankets without membrane facing) produced by combining thermosetting resins with mineral fibers manufactured from glass, slag wool, or rock wool.
 - 1. Fire-Resistance-Rated Assemblies: Comply with mineral-fiber requirements of assembly.
- E. Acoustical Sealant: Manufacturer's standard nonsag, paintable, nonstaining latex sealant complying with ASTM C 834. Product effectively reduces airborne sound transmission through perimeter joints and openings in building construction as demonstrated by testing representative assemblies according to ASTM E 90.

PART 3 - EXECUTION

3.1 APPLYING AND FINISHING PANELS

- A. Examine panels before installation. Reject panels that are wet, moisture damaged, and mold damaged.
- B. Comply with ASTM C 840.
- C. Isolate perimeter of gypsum board applied to non-load-bearing partitions at structural abutments. Provide 1/4- to 1/2-inch- wide spaces at these locations and trim edges with edge trim where edges of panels are exposed. Seal joints between edges and abutting structural surfaces with acoustical sealant.

- D. For trim with back flanges intended for fasteners, attach to framing with same fasteners used for panels. Otherwise, attach trim according to manufacturer's written instructions.
- E. Prefill open joints, rounded or beveled edges, and damaged surface areas.
- F. Apply joint tape over gypsum board joints, except for trim products specifically indicated as not intended to receive tape.
- G. Gypsum Board Finish Levels: Finish panels to levels indicated below and according to ASTM C 840:
 - 1. Level 1: Ceiling plenum areas, concealed areas, and where indicated.
 - 2. Level 2: Panels that are substrate for tile.
 - 3. Level 4: At panel surfaces that will be exposed to view unless otherwise indicated.
 - a. Primer and its application to surfaces are specified in Section 09 91 23 "Interior Painting."
 - 4. Level 5: Where indicated on Drawings.
- H. Glass-Mat Faced Panels: Finish according to manufacturer's written instructions.

3.2 PROTECTION

- A. Protect installed products from damage from weather, condensation, direct sunlight, construction, and other causes during remainder of the construction period.
- B. Remove and replace panels that are wet, moisture damaged, and mold damaged.

END OF SECTION 09 29 00

SECTION 09 30 13 - CERAMIC TILING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Porcelain tile.
 - 2. Metal edge strips.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples:
 - 1. Each type and composition of tile and for each color and finish required.

1.3 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

1.4 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match and are from same production runs as products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Tile and Trim Units: Furnish quantity of full-size units equal to 3 percent of amount installed for each type, composition, color, pattern, and size indicated.

PART 2 - PRODUCTS

2.1 PRODUCTS, GENERAL

- A. ANSI Ceramic Tile Standard: Provide Standard-grade tile that complies with ANSI A137.1 for types, compositions, and other characteristics indicated.
- B. ANSI Standards for Tile Installation Materials: Provide materials complying with ANSI A108.02, ANSI standards referenced in other Part 2 articles, ANSI standards referenced by TCNA installation methods specified in tile installation schedules, and other requirements specified.

2.2 TILE PRODUCTS

- A. Ceramic Tile Type CWT-1: Glazed Porcelain wall tile Refer to A11 series for Floor Finish Plan and Finish Schedule.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. American Marazzi Tile, Inc.
 - b. American Olean; a division of Dal-Tile Corporation.
 - c. Daltile.
 - d. Crossville Inc..
 - 3. Thickness: 5/16 inch.
 - 4. Face: Pattern of design indicated, with manufacturer's standard edges.
 - 5. Tile Color and Pattern: As selected by Owner or Architect from manufacturer's full range.
 - 6. Grout Color: As selected by Owner or Architect from manufacturer's full range.

2.3 TILE BACKING PANELS

- A. Cementitious Backer Units: ANSI A118.9 or ASTM C 1325, Type A.
 - 1. Products: Subject to compliance with requirements, provide comparable products by one of the following :
 - a. United States Gypsum Company; DUROCK Cement Board.
 - 2. Thickness: 5/8 inch.

2.4 SETTING MATERIALS

A. Portland Cement Mortar (Thickset) Installation Materials: ANSI A108.02.

2.5 GROUT MATERIALS

- A. Water-Cleanable Epoxy Grout: ANSI A118.3.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. Bonsal American, an Oldcastle company.

- b. Custom Building Products.
- c. MAPEI Corporation.
- d. Summitville Tiles, Inc.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions where tile will be installed, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
 - 1. Verify that substrates for setting tile are firm; dry; clean; free of coatings that are incompatible with tile-setting materials, including curing compounds and other substances that contain soap, wax, oil, or silicone; and comply with flatness tolerances required by ANSI A108.01 for installations indicated.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Blending: For tile exhibiting color variations, verify that tile has been factory blended and packaged so tile units taken from one package show same range of colors as those taken from other packages and match approved Samples. If not factory blended, either return to manufacturer or blend tiles at Project site before installing.

3.3 INSTALLATION

- A. Comply with TCA's "Handbook for Ceramic Tile Installation" for TCA installation methods specified in the installation schedules. Comply with parts of the ANSI A108 Series "Specifications for Installation of Ceramic Tile" that are referenced in TCA installation methods, specified in the tile installation schedules, and apply types of setting and grouting materials used.
- B. Extend tile work into recesses and under or behind equipment and fixtures to form complete covering without interruptions unless otherwise indicated. Terminate work neatly at obstructions, edges, and corners without disrupting pattern or joint alignments.
- C. Accurately form intersections and returns. Preform cutting and drilling of tile without marrying visible surfaces. Carefully grind cut edges of tile abutting trim finish, or built in items for straight aligned joints. Fit the tile closely to electrical outlets, piping, fixtures, and other penetrations so plates, collars, or covers overlap tile.
- D. Provide manufacturer's standard trim shapes where necessary to eliminate exposed tile edges.

- E. Jointing Pattern: Lay tile in grid pattern unless otherwise indicated. Lay out tile work and center tile fields in both directions in each space or on each wall area. Lay out tile work to minimize the use of pieces that are less than half of a tile. Provide uniform joint widths.
- F. Joint Widths: Unless otherwise indicated, install tile with the following joint widths:
- G. Glazed Wall Tile: 1/16"
- H. 3D Wall Tile: 1/8"
- I. Metal Edge Strips: Install at locations indicated on A11 series.
- J. Grout sealer: Apply grout sealer to grout joints according to grout sealer manufacturer's written instructions. As soon as grout sealer has penetrated grout joints, remove excess sealer from tile faces by wiping with soft cloth.
- K. Install cementitious backer units and treat joints according to ANSI A108.11 and Manufacturer's written instructions for type of application.
- L. Install crack isolation membrane to comply with ANSI A108.17 and manufacturer's written instructions to produce membrane of uniform thickness and bonded securely to substrate.

END OF SECTION 09 30 13

SECTION 09 51 23 - ACOUSTICAL TILE CEILINGS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Acoustical tiles for interior ceilings.
 - 2. Fully concealed, direct-hung, suspension systems.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples: For each exposed product and for each color and texture specified.

1.3 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, and coordinated with each other, using input from installers of the items involved.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance data.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Suspended ceilings shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

2.2 ACOUSTICAL TILES

- A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. Armstrong World Industries, Inc.
 - 2. United States Gypsum Company.

B. Acoustical Tile Standard: Manufacturer's standard tiles of configuration indicated that comply with ASTM E 1264.

2.3 METAL SUSPENSION SYSTEM

- A. Basis-of-Design Product:: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. Armstrong World Industries, Inc.
 - 2. United States Gypsum Company.
- B. Metal Suspension-System Standard: Manufacturer's standard, direct-hung, fully concealed, metal suspension system that complies with applicable requirements in ASTM C 635/C 635M.

2.4 ACCESSORIES

A. Attachment Devices: Size for five times the design load indicated in ASTM C 635/C 635M, Table 1, "Direct Hung," unless otherwise indicated. Comply with seismic design requirements.

2.5 METAL EDGE MOLDINGS AND TRIM

- A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. Armstrong World Industries, Inc.
 - 2. United States Gypsum Company.
- B. Roll-Formed, Sheet-Metal Edge Moldings and Trim: Type and profile indicated or, if not indicated, manufacturer's standard moldings for edges and penetrations complying with seismic design requirements; formed from sheet metal of same material, finish, and color as that used for of suspension-system runners.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Measure each ceiling area and establish layout of acoustical tiles to balance border widths at opposite edges of each ceiling. Avoid using less-than-half-width tiles at borders unless otherwise indicated.
- B. Layout openings for penetrations centered on the penetrating items.

3.2 INSTALLATION OF SUSPENDED ACOUSTICAL TILE CEILINGS

- A. Install suspended acoustical tile ceilings according to ASTM C 636/C 636M, seismic design requirements, and manufacturer's written instructions.
- B. Install edge moldings and trim of type indicated at perimeter of acoustical ceiling area and where necessary to conceal edges of acoustical tiles.
 - 1. Apply acoustical sealant in a continuous ribbon concealed on back of vertical legs of moldings before they are installed.
 - 2. Do not use exposed fasteners, including pop rivets, on moldings and trim.
- C. Arrange directionally patterned acoustical tiles as indicated on reflected ceiling plans.

END OF SECTION 09 51 23

SECTION 09 64 00 - WOOD FLOORING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Factory-finished engineered wood flooring
 - 2. Field-finished wood flooring

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For each type of floor assembly and accessory. Include plans, sections, and attachment details. Include expansion provisions and trim details.
- C. Samples: For each exposed product and for each color and texture specified.

PART 2 - PRODUCTS

2.1 FACTORY-FINISHED WOOD FLOORING (WD-4)

- A. Engineered-Wood Flooring
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings
 - 3. Species: As indicated on Drawings
 - 4. Thickness: As Indicated on Drawings
 - 5. Edge Style: As Indicated on Drawings

2.2 FIELD-FINISHED WOOD FLOORING (WD-1)

- A. Custom Wood Flooring (Patching existing flooring)
 - 1. Species: As indicated on Drawings
 - 2. Cut: As Indicated on Drawings.
 - 3. Thickness: As Indicated on Drawings

- 4. Edge Style: As Indicated on Drawings
- 5. Finish: As Indicated On Drawings
- 6. Color: Custom Stain to match existing flooring

2.3 SOUND CONTROL UNDERLAYMENT

- A. Sound Control Underlayment: Sound reducing underlayment consisting of impact-absorbing materials. Minimum Impact Insulation Class (IIC) of 50 when tested according to ASTM E 492.
 - 1. Material: Per Maufacturers Instructions.

2.4 ACCESSORY MATERIALS

- A. Subfloor: Plywood substrate as indicated on drawings
- B. Vapor Retarder: ASTM D 4397, polyethylene sheet not less than 6.0 mils thick.
- C. Wood Flooring Adhesive: Mastic recommended by flooring and adhesive manufacturers for application indicated.
 - 1. VOC Content: Not more than 100 g/L.
- D. Trowelable Leveling and Patching Compound: Latex-modified, hydraulic-cement-based formulation approved by wood flooring manufacturer.
- E. Fasteners: As recommended by manufacturer, but not less than that recommended in NWFA's "Installation Guidelines."
- F. Metal Transition Strip: As needed to transition from Engineered wood to other floor materials

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Concrete Slabs:
 - 1. Moisture Testing: Perform tests so that each test area does not exceed 200 sq. ft., and perform no fewer than three tests in each installation area and with test areas evenly spaced in installation areas.
 - a. Anhydrous Calcium Chloride Test: ASTM F 1869. Proceed with installation only after substrates have maximum moisture-vapor-emission rate of 3 lb of water/1000 sq. ft. in 24 hours.
 - b. Relative Humidity Test: Using in situ probes, ASTM F 2170. Proceed with installation only after substrates have a maximum 80 percent relative humidity level measurement.

c. Perform additional moisture tests recommended by manufacturer. Proceed with installation only after substrates pass testing.

3.2 PREPARATION

- A. Concrete Slabs:
 - 1. Grind high spots and fill low spots to produce a maximum 1/8-inch deviation in any direction when checked with a 10-foot straight edge.
 - 2. Use trowelable leveling and patching compounds, according to manufacturer's written instructions, to fill cracks, holes, and depressions in substrates.
 - 3. Remove coatings, including curing compounds, and other substances on substrates that are incompatible with installation adhesives and that contain soap, wax, oil, or silicone, using mechanical methods recommended by manufacturer. Do not use solvents.
- B. Broom or vacuum clean substrates to be covered immediately before product installation. After cleaning, examine substrates for moisture, alkaline salts, carbonation, or dust. Proceed with installation only after unsatisfactory conditions have been corrected.

3.3 INSTALLATION

- A. Comply with flooring manufacturer's written installation instructions, but not less than applicable recommendations in NWFA's "Installation Guidelines."
- B. Engineered-Wood Flooring: Set in adhesive & Nailed as documented.
- C. Field-Finished Wood Flooring: Patch existing wood flooring as noted in drawings and install to make a flush/seamless transition. Follow existing patterning & size.

3.4 PROTECTION

- A. Protect installed wood flooring during remainder of construction period with covering of heavy kraft paper or other suitable material. Do not use plastic sheet or film that might cause condensation.
 - 1. Do not move heavy and sharp objects directly over kraft-paper-covered wood flooring. Protect flooring with plywood or hardboard panels to prevent damage from storing or moving objects over flooring.

END OF SECTION 09 64 00

SECTION 09 65 19 - RESILIENT TILE FLOORING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Solid vinyl floor tile.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples: Full-size units of each color and pattern of floor tile required.

1.3 CLOSEOUT SUBMITTALS

A. Maintenance data.

1.4 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match and are from same production runs as products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Resilient Tile Units: Furnish quantity of full-size units equal to 3 percent of amount installed for each type, composition, color, pattern, and size indicated.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Fire-Test-Response Characteristics: For resilient tile flooring, as determined by testing identical products according to ASTM E 648 or NFPA 253 by a qualified testing agency.
 - 1. Critical Radiant Flux Classification: Class I, not less than 0.45 W/sq. cm.

2.2 LUXURY VINYL FLOOR TILE (LVT-1)

A. Size: As indicated on the drawings.

B. Colors and Patterns: As indicated on the drawings.

2.3 INSTALLATION MATERIALS

- A. Trowelable Leveling and Patching Compounds: Latex-modified, portland cement based or blended hydraulic-cement-based formulation provided or approved by floor tile manufacturer for applications indicated.
- B. Adhesives: Water-resistant type recommended by floor tile and adhesive manufacturers to suit floor tile and substrate conditions indicated.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Prepare substrates according to floor tile manufacturer's written instructions to ensure adhesion of resilient products.
- B. Concrete Substrates: Prepare according to ASTM F 710.
 - 1. Verify that substrates are dry and free of curing compounds, sealers, and hardeners.
 - 2. Remove substrate coatings and other substances that are incompatible with adhesives and that contain soap, wax, oil, or silicone, using mechanical methods recommended by floor tile manufacturer. Do not use solvents.
 - 3. Alkalinity and Adhesion Testing: Perform tests recommended by floor tile manufacturer. Proceed with installation only after substrate alkalinity falls within range on pH scale recommended by manufacturer in writing, but not less than 5 or more than 9 pH.
 - 4. Moisture Testing: Proceed with installation only after substrates pass testing according to floor tile manufacturer's written recommendations, but not less stringent than the following:
 - a. Perform anhydrous calcium chloride test according to ASTM F 1869. Proceed with installation only after substrates have maximum moisture-vapor-emission rate of 3 lb of water/1000 sq. ft. in 24 hours.
 - b. Perform relative humidity test using in situ probes according to ASTM F 2170. Proceed with installation only after substrates have a maximum 75 percent relative humidity level.
- C. Fill cracks, holes, and depressions in substrates with trowelable leveling and patching compound; remove bumps and ridges to produce a uniform and smooth substrate.
- D. Do not install floor tiles until they are the same temperature as the space where they are to be installed.
- E. Immediately before installation, sweep and vacuum clean substrates to be covered by resilient floor tile.

3.2 FLOOR TILE INSTALLATION

- A. Comply with manufacturer's written instructions for installing floor tile.
- B. Lay out floor tiles from center marks established with principal walls, discounting minor offsets, so tiles at opposite edges of room are of equal width. Adjust as necessary to avoid using cut widths that equal less than one-half tile at perimeter.
 - 1. Lay tiles in pattern indicated on drawings.
- C. Match floor tiles for color and pattern by selecting tiles from cartons in the same sequence as manufactured and packaged, if so numbered. Discard broken, cracked, chipped, or deformed tiles.
 - 1. Lay tiles in pattern of colors and sizes indicated.
- D. Scribe, cut, and fit floor tiles to butt neatly and tightly to vertical surfaces and permanent fixtures including built-in furniture, cabinets, pipes, outlets, and door frames.
- E. Extend floor tiles into toe spaces, door reveals, closets, and similar openings. Extend floor tiles to center of door openings.
- F. Maintain reference markers, holes, and openings that are in place or marked for future cutting by repeating on floor tiles as marked on substrates. Use chalk or other nonpermanent marking device.
- G. Install floor tiles on covers for telephone and electrical ducts, building expansion-joint covers, and similar items in finished floor areas. Maintain overall continuity of color and pattern between pieces of tile installed on covers and adjoining tiles. Tightly adhere tile edges to substrates that abut covers and to cover perimeters.
- H. Adhere floor tiles to flooring substrates using a full spread of adhesive applied to substrate to produce a completed installation without open cracks, voids, raising and puckering at joints, telegraphing of adhesive spreader marks, and other surface imperfections.

3.3 CLEANING AND PROTECTION

- A. Comply with manufacturer's written instructions for cleaning and protecting floor tile.
- B. Cover floor tile until Substantial Completion.

END OF SECTION 09 65 19

SECTION 09 68 13 - TILE CARPETING

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes modular walk-off mat tile.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples: For each exposed product and for each color and texture required.

1.3 IINFORMATIONAL SUBMITTALS

A. Sample warranty.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance data.

1.5 WARRANTY

- A. Special Warranty for Carpet Tiles: Manufacturer agrees to repair or replace components of carpet tile installation that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: 10 years from date of Substantial Completion.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match and are from same production runs as products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Carpet Tile Units: Furnish quantity of full-size units equal to 3 percent of amount installed for each type, composition, color, pattern and size indicated.

PART 2 - PRODUCTS

2.1 WALK-OFF MAT TILE: WOM-1

- A. Manufacturers: Subject to compliance with requirements, provide Basis-of-Design products indicated on the drawings, or substitution approved by Architect or Owner.
- B. Color: As indicated on the drawings.
- C. Pattern: As indicated on the drawings.

2.2 INSTALLATION ACCESSORIES

- A. Trowelable Leveling and Patching Compounds: Latex-modified, hydraulic-cement-based formulation provided or recommended by carpet tile manufacturer.
- B. Adhesives: Water-resistant, mildew-resistant, nonstaining, pressure-sensitive type to suit products and subfloor conditions indicated, that comply with flammability requirements for installed carpet tile, and are recommended by carpet tile manufacturer for releasable installation.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Concrete Slabs:
 - 1. Moisture Testing: Perform tests so that each test area does not exceed 200 sq. ft., and perform no fewer than three tests in each installation area and with test areas evenly spaced in installation areas.
 - a. Anhydrous Calcium Chloride Test: ASTM F 1869. Proceed with installation only after substrates have maximum moisture-vapor-emission rate of 3 lb of water/1000 sq. ft. in 24 hours.
 - b. Relative Humidity Test: Using in situ probes, ASTM F 2170. Proceed with installation only after substrates have a maximum 75 percent relative humidity level measurement.
 - c. Perform additional moisture tests recommended in writing by adhesive and carpet tile manufacturers. Proceed with installation only after substrates pass testing.

3.2 PREPARATION

A. General: Comply with CRI's "CRI Carpet Installation Standards" and with carpet tile manufacturer's written installation instructions for preparing substrates indicated to receive carpet tile.

- B. Use trowelable leveling and patching compounds, according to manufacturer's written instructions, to fill cracks, holes, depressions, and protrusions in substrates. Fill or level cracks, holes and depressions 1/8 inch wide or wider, and protrusions more than 1/32 inch unless more stringent requirements are required by manufacturer's written instructions.
- C. Concrete Substrates: Remove coatings, including curing compounds, and other substances that are incompatible with adhesives and that contain soap, wax, oil, or silicone, without using solvents. Use mechanical methods recommended in writing by adhesive and carpet tile manufacturers.
- D. Broom and vacuum clean substrates to be covered immediately before installing carpet tile.

3.3 INSTALLATION

- A. General: Comply with CRI's "CRI Carpet Installation Standard," Section 18, "Modular Carpet" and with carpet tile manufacturer's written installation instructions.
- B. Installation Method: As recommended in writing by carpet tile manufacturer.
- C. Maintain dye-lot integrity. Do not mix dye lots in same area.
- D. Maintain pile-direction patterns recommended in writing by carpet tile manufacturer.
- E. Cut and fit carpet tile to butt tightly to vertical surfaces, permanent fixtures, and built-in furniture including cabinets, pipes, outlets, edgings, thresholds, and nosings. Bind or seal cut edges as recommended by carpet tile manufacturer.
- F. Extend carpet tile into toe spaces, door reveals, closets, open-bottomed obstructions, removable flanges, alcoves, and similar openings.
- G. Maintain reference markers, holes, and openings that are in place or marked for future cutting by repeating on carpet tile as marked on subfloor. Use nonpermanent, nonstaining marking device.
- H. Install pattern as noted on drawings.
- I. Protect carpet tile against damage from construction operations and placement of equipment and fixtures during the remainder of construction period. Use protection methods indicated or recommended in writing by carpet tile manufacturer.

END OF SECTION 09 68 13

SECTION 09 91 13 - EXTERIOR PAINTING

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes surface preparation and the application of paint systems on exterior substrates.

1.2 DEFINITIONS

- A. MPI Gloss Level 1: Not more than five units at 60 degrees and 10 units at 85 degrees, according to ASTM D 523.
- B. MPI Gloss Level 3: 10 to 25 units at 60 degrees and 10 to 35 units at 85 degrees, according to ASTM D 523.
- C. MPI Gloss Level 4: 20 to 35 units at 60 degrees and not less than 35 units at 85 degrees, according to ASTM D 523.
- D. MPI Gloss Level 5: 35 to 70 units at 60 degrees, according to ASTM D 523.
- E. MPI Gloss Level 6: 70 to 85 units at 60 degrees, according to ASTM D 523.
- F. MPI Gloss Level 7: More than 85 units at 60 degrees, according to ASTM D 523.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include preparation requirements and application instructions.
- B. Samples: For each type of paint system and each color and gloss of topcoat.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. Dulux (formerly ICI Paints); a brand of AkzoNobel.
 - 2. Glidden Professional.
 - 3. PPG Architectural Finishes, Inc.
 - 4. Sherwin-Williams Company (The).

2.2 PAINT, GENERAL

- A. MPI Standards: Products shall comply with MPI standards indicated and shall be listed in its "MPI Approved Products Lists."
- B. Material Compatibility:
 - 1. Materials for use within each paint system shall be compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
 - 2. For each coat in a paint system, products shall be recommended in writing by topcoat manufacturers for use in paint system and on substrate indicated.
- C. Colors: As indicated in Drawings .

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
- B. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:
 - 1. Concrete: 12 percent.
 - 2. Fiber-Cement Board: 12 percent.
 - 3. Masonry (Clay and CMUs): 12 percent.
 - 4. Wood: 15 percent.
 - 5. Portland Cement Plaster: 12 percent.
 - 6. Gypsum Board: 12 percent.
- C. Verify suitability of substrates, including surface conditions and compatibility with existing finishes and primers.
- D. Proceed with coating application only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Comply with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual" applicable to substrates and paint systems indicated.
- B. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.

1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection.

3.3 APPLICATION

- A. Apply paints according to manufacturer's written instructions and recommendations in "MPI Manual."
- B. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.

3.4 CLEANING AND PROTECTION

- A. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.
- B. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.

3.5 EXTERIOR PAINTING SCHEDULE

- A. Steel Substrates:
 - 1. Water-Based Light Industrial Coating System :
 - a. Prime Coat: Shop primer specified in Section where substrate is specified.
 - b. Intermediate Coat: Light industrial coating, exterior, water based, matching topcoat.
 - c. Topcoat: Light industrial coating, exterior, water based (MPI Gloss Level 3), MPI #161.
- B. Galvanized-Metal Substrates:
 - 1. Water-Based Light Industrial Coating System MPI EXT 5.3J:
 - a. Prime Coat: Primer, galvanized, water based, as recommended in writing by topcoat manufacturer for exterior use on galvaniced-metal substrates with topcoat indicated.
 - b. Intermediate Coat: Light industrial coating, exterior, water based, matching topcoat.
 - c. Topcoat: Light industrial coating, exterior, water based (MPI Gloss Level 3), MPI #161.

SECTION 09 91 23 - INTERIOR PAINTING

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes surface preparation and the application of paint systems on interior substrates.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include preparation requirements and application instructions.
- B. Samples: For each type of paint system and in each color and gloss of topcoat.

1.3 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match and are from same production runs as products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Paint Products: Furnish quantity of 3 percent of amount installed or minimum 1 gallon for each type and color.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings.

2.2 PAINT, GENERAL

- A. Material Compatibility:
 - 1. Materials for use within each paint system shall be compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
 - 2. For each coat in a paint system, products shall be recommended in writing by topcoat manufacturers for use in paint system and on substrate indicated.
- B. Colors: As indicated in a color schedule on the drawings..

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
- B. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:
 - 1. Gypsum Board: 12 percent.
- C. Verify suitability of substrates, including surface conditions and compatibility with existing finishes and primers.

3.2 PREPARATION

- A. Comply with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual" applicable to substrates and paint systems indicated.
- B. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.
 - 1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection if any.

3.3 APPLICATION

- A. Apply paints according to manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual."
- B. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.

3.4 INTERIOR PAINTING SCHEDULE

- A. Steel Substrates:
 - 1. Institutional Low-Odor/VOC Latex System MPI INT5.1S:
 - a. Prime Coat: Primer, rust inhibitive, water based MPI#107.
 - b. Intermediate Coat: Latex, interior, institutional low odor/VOC, matching topcoat.

- c. Topcoat: Latex, interior, institutional low odor/VOC, semi-gloss (MPI Gloss Level 5), MPI#147.
- B. Gypsum Board Substrates:
 - 1. Institutional Low-Odor/VOC Latex System MPI INTMPI INT 9.2M:
 - a. Prime Coat: Primer sealer, interior, institutional low odor/VOC,MPI#149.
 - b. Intermediate Coat: Latex, interior, institutional low odor/VOC, matching topcoat.
 - c. Topcoat: Latex, interior, institutional low odor/VOC (MPI Gloss Level 4), MPI#146.

END OF SECTION 09 91 23

SECTION 09 93 00 - STAINING AND TRANSPARENT FINISHING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Primers
 - 2. Wood stains.
 - 3. Transparent finishes.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples: For each type of finish system and in each color and gloss of finish required.
- C. Product List: Cross-reference to finish system and locations of application areas. Use same designations indicated on Drawings and in schedules. Include color designations.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Behr Paint Company; Behr Process Corporation.
 - 2. Benjamin Moore & Co.
 - 3. HEMPEL A/S.
 - 4. PPG Paints.
 - 5. Rust-Oleum Corporation; a subsidiary of RPM International, Inc.
 - 6. Sherwin-Williams Company (The).

2.2 MATERIALS, GENERAL

- A. Material Compatibility:
 - 1. Provide materials for use within each coating system that are compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.

- B. VOC Content: For field applications that are inside the weatherproofing system, paints and coatings shall comply with VOC content limits of authorities having jurisdiction.
 - 1. Clear Wood Finishes, Varnishes: 350 g/L.
 - 2. Clear Wood Finishes, Lacquers: 550 g/L.
 - 3. Shellacs, Clear: 730 g/L.
 - 4. Stains: 250 g/L.
- C. Stain Colors: As selected by Architect from manufacturer's full range, or Match Architect's samples As indicated in a color schedule Insert requirements.

2.3 PRIMERS

- a. Benjamin Moore & Co.
- b. Rust-Oleum Corporation; a subsidiary of RPM International, Inc.
- c. Benjamin Moore & Co.
- d. Rust-Oleum Corporation; a subsidiary of RPM International, Inc.
- e. Rust-Oleum Corporation; a subsidiary of RPM International, Inc.
- B. Alkyd Sanding Sealer, Interior, Solvent Based, Clear: Solvent-based, quick-drying, clear, sandable alkyd sealer used on new interior wood surfaces that are to be top-coated with an alkyd varnish.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. PPG Paints.
 - b. Sherwin-Williams Company (The).

2.4 WOOD STAINS

- a. Benjamin Moore & Co.
- b. Benjamin Moore & Co.
- c. Rust-Oleum Corporation; a subsidiary of RPM International, Inc.
- d. Benjamin Moore & Co.
- e. Coronado Paint; Benjamin Moore & Co.
- B. Stain, Interior, Semitransparent, for Interior Wood: Solvent-based, oil or oil/alkyd, semitransparent, pigmented stain for new interior wood surfaces that are to be finished with a clear varnish.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

- a. PPG Paints.
- b. Rust-Oleum Corporation; a subsidiary of RPM International, Inc.
- c. Sherwin-Williams Company (The).
- d.

2.5 TRANSPARENT FINISHES

- A. Varnish, Interior Polyurethane, Moisture Cured: Solvent-based, moisture-curing polyurethane clear-coating with a gloss finish for interior wood surfaces,
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Benjamin Moore & Co.
 - b. Sherwin-Williams Company (The).
 - c.
 - 2. Gloss Level: Manufacturer's standard finish sheen selected from Manufacturer's full range..
 - a. Benjamin Moore & Co.
 - b. Rust-Oleum Corporation; a subsidiary of RPM International, Inc.
 - c. Benjamin Moore & Co.
 - d. Rust-Oleum Corporation; a subsidiary of RPM International, Inc.
- B. Varnish, Interior, Gloss: Solvent-based, alkyd-type, clear varnish for new or properly prepared, previously varnished interior wood surfaces.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. PPG Paints.
 - b. Sherwin-Williams Company (The).
 - c.
 - 2. Gloss Level: Manufacturer's standard finish sheen selected from full range..
- C. Varnish, Interior, Water Based, Clear, Satin: Water-based clear satin coating for interior wood trim, frames, doors, paneling and cabinetry.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Benjamin Moore & Co.

- b. Lenmar Lacquers; Benjamin Moore & Co.
- c. PPG Paints.
- d. Sherwin-Williams Company (The).
- e. Insert manufacturer's name.
- f. Benjamin Moore & Co.
- g. Lenmar Lacquers; Benjamin Moore & Co.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Maximum Moisture Content of Exterior Wood Substrates: 15 percent, when measured with an electronic moisture meter.
- B. Maximum Moisture Content of Interior Wood Substrates: 10 percent, when measured with an electronic moisture meter.

3.2 PREPARATION

- A. Remove hardware, covers, plates, and similar items already in place that are removable. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and finishing.
 - 1. After completing finishing operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection if any.
- B. Clean and prepare surfaces to be finished according to manufacturer's written instructions for each substrate condition and as specified.
 - 1. Remove dust, dirt, oil, and grease by washing with a detergent solution; rinse thoroughly with clean water and allow to dry. Remove grade stamps and pencil marks by sanding lightly. Remove loose wood fibers by brushing.
 - 2. Remove mildew by scrubbing with a commercial wash formulated for mildew removal and as recommended by stain manufacturer.

3.3 APPLICATION

- A. Apply finishes according to manufacturer's written instructions.
- B. Apply finishes to produce surface films without cloudiness, holidays, lap marks, brush marks, runs, ropiness, or other surface imperfections.

3.4 CLEANING AND PROTECTION

- A. Protect work of other trades against damage from finish application. Correct damage by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.
- B. At completion of construction activities of other trades, touch up and restore damaged or defaced finished wood surfaces.

3.5 INTERIOR WOOD-FINISH-SYSTEM SCHEDULE

- A. Wood Substrates, Wood Trim, Architectural Woodwork, Doors Windows Wood Board Paneling:
 - 1. Semitransparent Stain System :
 - a. Prime Coat: Stain, exterior, solvent based, semitransparent, matching topcoat.
 - b. Topcoat: Stain, exterior, solvent based, semitransparent.
 - c. Location: Historic Panels, Trim, Railings, Doors, Windows.
 - 2. Clear, Two-Component Polyurethane System :
 - a. Prime Coat: Two-component water-based polyurethane matching topcoat.
 - b. Intermediate Coat: Two-component water-based polyurethane matching topcoat.
 - c. Topcoat: Varnish, aliphatic polyurethane, two component, sheen to be selected.
 - d. Location: Refinished wood floors and new wood floors.

END OF SECTION 09 93 00

SECTION 09 96 00 - HIGH-PERFORMANCE COATINGS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes surface preparation and the application of high-performance coating systems on the following substrates:
 - 1. Exterior Substrates:
 - a. Non-Galvanized Steel.

1.2 DEFINITIONS

- A. MPI Gloss Level 5: 35 to 70 units at 60 degrees, according to ASTM D 523.
- B. MPI Gloss Level 6: 70 to 85 units at 60 degrees, according to ASTM D 523.
- C. MPI Gloss Level 7: More than 85 units at 60 degrees, according to ASTM D 523.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include preparation requirements and application instructions.
- B. Samples: For each type of coating system and in each color and gloss of topcoat indicated.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, [provide products by the following] [provide products by one of the following] [available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following]:
 - 1. Behr Process Corporation.
 - 2. Benjamin Moore & Co.
 - 3. Comex Industrial Coatings; Comex Group.
 - 4. Corotech Coatings; Benjamin Moore & Co.
 - 5. Devoe Paint Company; Akzo Nobel.
 - 6. Diamond Vogel Paints.

- 7. Dulux (formerly ICI Paints); a brand of AkzoNobel.
- 8. PPG Architectural Finishes, Inc.
- 9. Rust-Oleum Corporation; a subsidiary of RPM International, Inc.
- 10. Sherwin-Williams Company (The).
- 11. Tnemec Company, Inc.
- 12. Insert manufacturer's name.
- B. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to products listed in the Exterior High-Performance Coating Schedule or Interior High-Performance Coating Schedule for the coating category indicated.

2.2 HIGH-PERFORMANCE COATINGS, GENERAL

- A. MPI Standards: Products shall comply with MPI standards indicated and shall be listed in its "MPI Approved Products Lists."
- B. Material Compatibility:
 - 1. Materials for use within each paint system shall be compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
 - 2. For each coat in a paint system, products shall be recommended in writing by topcoat manufacturers for use in paint system and on substrate indicated.
 - 3. Products shall be of same manufacturer for each coat in a coating system.
- C. Colors: As selected by Architect from manufacturer's full range .

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
- B. Proceed with coating application only after unsatisfactory conditions have been corrected.
 1. Application of coating indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Comply with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual" applicable to substrates and coating systems indicated.

- B. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.
 - 1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection if any.
- C. Clean substrates of substances that could impair bond of coatings, including dust, dirt, oil, grease, and incompatible paints and encapsulants.
 - 1. Remove incompatible primers and reprime substrate with compatible primers or apply tie coat as required to produce coating systems indicated.

3.3 APPLICATION

- A. Apply high-performance coatings according to manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual."
 - 1. Use applicators and techniques suited for coating and substrate indicated.
 - 2. Coat non-exposed surfaces the same as exposed surfaces.
- B. If undercoats or other conditions show through final coat, apply additional coats until cured film has a uniform coating finish, color, and appearance.
- C. Apply coatings to produce surface films without cloudiness, spotting, holidays, laps, brush marks, runs, sags, ropiness, or other surface imperfections. Produce sharp glass lines and color breaks.

3.4 CLEANING AND PROTECTION

- A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.
- B. After completing coating application, clean spattered surfaces. Remove spattered coatings by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.
- C. Protect work of other trades against damage from coating operation. Correct damage to work of other trades by cleaning, repairing, replacing, and recoating, as approved by Architect, and leave in an undamaged condition.
- D. At completion of construction activities of other trades, touch up and restore damaged or defaced coated surfaces.

3.5 EXTERIOR HIGH-PERFORMANCE COATING SCHEDULE

A. Non-Galvanized Steel Substrates:

- 1. Locations: Steel channel accent ribbon and entry canopy with building identification numbers. Approved manufacturers and systems are listed below.
 - a. Products: Inorganic Zinc Epoxy Intermediate Polyurethane 3-Part Finish (coatings 1, 2, 3 listed in order):
 - 1) PPG Protective & Marine Coatings
 - a) DIMETCOTE 9, AMERCOAT 385, AMERCOAT 450 HS
 - 2) Carboline Company
 - a) CARBOZINC 11, CARBOGUARD 893, CARBOTHANE 134HS
 - b) CARBOZINC 11HS, CARBOGUARD 893., CARBOTHANE 134HS
 - 3) International Paint, Inc.
 - a) INTERZINC 22HS, INTERGARD 475HS INTERTHANE 990HS
 - b) INTERZINC 22, INTERGARD 475HS, INTERTHANE 990HS
 - 4) Sherwin-Williams Co.
 - a) ZINC CLAD II PLUS, STEEL SPEC EPOXY, INDOT ACRYLIC URETHANE

END OF SECTION 09 96 00

SECTION 10 28 00 - TOILET, BATH, AND LAUNDRY ACCESSORIES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Washroom accessories.
 - 2. Custodial accessories.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.3 INFORMATIONAL SUBMITTALS

A. Sample warranty.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance data.

1.5 WARRANTY

- A. Manufacturer's Special Warranty for Mirrors: Manufacturer agrees to repair or replace mirrors that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: 15 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 WASHROOM ACCESSORIES

- A. Products: Provide products as scheduled on the drawings or submit equal products by one of the following manufacturers:
 - 1. American Specialties, Inc.
 - 2. Bobrick Washroom Equipment, Inc.
 - 3. Bradley Corporation

2.2 CUSTODIAL ACCESSORIES

- A. Utility Shelf :
 - 1. Provide product or approved equal in each custodial/janitor's closet.
 - 2. Description: With exposed edges turned down not less than 1/2 inchand supported by two triangular brackets welded to shelf underside.
 - 3. Size: 16 incheslong by 6 inchesdeep.
 - 4. Material and Finish: Not less than nominal 0.05-inch-thick stainless steel, No. 4 finish (satin).
- B. Mop and Broom Holder:
 - 1. Provide product or approved equal in each custodial/janitor's closet.
 - 2. Description: Unit with shelf, hooks, holders, and rod suspended beneath shelf
 - 3. Length: 36 inches.
 - 4. Hooks: Four.
 - 5. Mop/Broom Holders: Three, spring-loaded, rubber hat, cam type.
 - 6. Material and Finish: Stainless steel, No. 4 finish (satin).

2.3 FABRICATION

A. Keys: Provide universal keys for internal access to accessories for servicing and resupplying. Provide minimum of six keys to Owner's representative.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install accessories according to manufacturers' written instructions, using fasteners appropriate to substrate indicated and recommended by unit manufacturer. Install units level, plumb, and firmly anchored in locations and at heights indicated.
- B. Grab Bars: Install to withstand a downward load of at least 250 lbf, when tested according to ASTM F 446.

END OF SECTION 10 28 00

SECTION 10 44 13 - FIRE EXTINGUISHER CABINETS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes fire protection cabinets for fire extinguishers.

1.2 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Maintenance data.

1.3 QUALITY ASSURANCE

- A. Coordinate size of fire protection cabinets to ensure that type and capacity of fire extinguishers indicated are accommodated.
- B. Coordinate sizes and locations of fire protection cabinets with wall depths.

PART 2 - PRODUCTS

2.1 FIRE PROTECTION CABINET

- A. Cabinet Type: Suitable for fire extinguisher.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. J. L. Industries, Inc., a division of Activar Construction Products Group; Academy Series.
- B. Cabinet Construction: Nonrated.
- C. Cabinet Material: Aluminum sheet.
- D. Semirecessed Cabinet: Cabinet box partially recessed in walls of sufficient depth to suit style of trim indicated; with one-piece combination trim and perimeter door frame overlapping surrounding wall surface with exposed trim face and wall return at outer edge (backbend). Provide where walls are of insufficient depth for recessed cabinets but are of sufficient depth to accommodate semirecessed cabinet installation.
- 1. Square-Edge Trim: 1-1/4- to 1-1/2-inch backbend depth.
- 2. Rolled-Edge Trim: 2-1/2-inch backbend depth.
- E. Cabinet Trim Material: Aluminum sheet.
- F. Door Material: Aluminum sheet.
- G. Door Style: Vertical duo panel with frame .
- H. Door Glazing: Tempered float glass (clear).
- I. Door Hardware: Manufacturer's standard door-operating hardware of proper type for cabinet type, trim style, and door material and style indicated.
- J. Accessories:
 - 1. Mounting Bracket: Manufacturer's standard steel, designed to secure fire extinguisher to fire protection cabinet, of sizes required for types and capacities of fire extinguishers indicated, with plated or baked-enamel finish.
 - 2. Identification: Lettering complying with authorities having jurisdiction for letter style, size, spacing, and location. Locate as indicated.
 - a. Identify fire extinguisher in fire protection cabinet with the words "FIRE EXTINGUISHER."
 - 1) Location: Applied to cabinet glazing.
 - 2) Application Process: Silk-screened.
 - 3) Lettering Color: Red.
 - 4) Orientation: Vertical.

K. Finishes:

1. Aluminum: Clear anodic.

2.2 FABRICATION

A. Fire Protection Cabinets: Provide manufacturer's standard box (tub), with trim, frame, door, and hardware to suit cabinet type, trim style, and door style indicated. Miter and weld joints and grind smooth.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Examine walls and partitions for suitable framing depth and blocking where semirecessed cabinets will be installed and prepare recesses as required by type and size of cabinet and trim style.

- B. Fire Protection Cabinets: Fasten cabinets to structure, square and plumb.
- C. Adjust fire protection cabinet doors to operate easily without binding. Verify that integral locking devices operate properly.
- D. Replace fire protection cabinets that have been damaged or have deteriorated beyond successful repair by finish touchup or similar minor repair procedures.

END OF SECTION 10 44 13

SECTION 10 44 16 - FIRE EXTINGUISHERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes portable, hand-carried fire extinguishers.

1.2 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Operation and maintenance data.
- C. Warranty: Sample of special warranty.
- 1.3 QUALITY ASSURANCE
 - A. NFPA Compliance: Fabricate and label fire extinguishers to comply with NFPA 10, "Portable Fire Extinguishers."
 - B. Fire Extinguishers: Listed and labeled for type, rating, and classification by an independent testing agency acceptable to authorities having jurisdiction.
 - C. Coordinate type and capacity of fire extinguishers with fire protection cabinets to ensure fit and function.

1.4 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace fire extinguishers that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Failure of hydrostatic test according to NFPA 10.
 - b. Faulty operation of valves or release levers.
 - 2. Warranty Period: Six years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PORTABLE, HAND-CARRIED FIRE EXTINGUISHERS

- A. Fire Extinguishers: Type, size, and capacity for each fire protection cabinet indicated.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide J. L. Industries, Inc. Cosmic 10E or comparable product by one of the following:
 - a. Larsen's Manufacturing Company.
- B. 2.5-gal. nominal capacity, with water in stainless-steel container; with pressure-indicating gage.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Examine fire extinguishers for proper charging and tagging.
 - 1. Remove and replace damaged, defective, or undercharged fire extinguishers.
- B. Install fire extinguishers in locations indicated and in compliance with requirements of authorities having jurisdiction.

END OF SECTION 10 44 16

SECTION 10 55 00.13 - USPS-DELIVERY POSTAL SPECIALTIES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Combined cluster box units, outcoing mail compartment and parcel lockers.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For postal specialties. Include plans, elevations, sections, and attachment details.

1.3 DELIVERY, STORAGE, AND HANDLING

A. Furnish lock keys according to USPS requirements; with temporary identification for their respective locks, bagged, and securely taped inside the collection compartment for shipping.

PART 2 - PRODUCTS

2.1 MAIL RECEPTACLES

- A. Front-Loading Mail Receptacles Insert drawing designation: USPS-STD-4C; consisting of multiple compartments with fixed, solid compartment backs, enclosed within a recessed wall box.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. 2B Global Inc.
 - b. Jayco Industries.
 - c. Jensen Mailboxes; SCC Architectural Building Products.
 - d. National Mailboxes; a division of NMHP, Inc.
 - e. Postal Products Unlimited, Inc.
 - 2. Front-Loading Master Door: Fabricated from extruded aluminum and braced and framed to hold compartment doors; prepared to receive master-door lock.
 - 3. Compartments: As indicated on Drawings, of the following sizes:

- 4. Compartment Doors: Fabricated from extruded aluminum. Equip each with lock and tenant identification as required by USPS-STD-4C. Provide mail slot in the compartment with master-door lock.
- 5. Exposed Aluminum Finish:
 - a. Baked-Enamel or Powder-Coated Finish: Color as selected by Architect from manufacturer's full range.

2.2 FABRICATION

- A. Form postal specialties to required shapes and sizes, with true lines and angles, square, rigid, and without warp, and with metal faces flat and free of dents or distortion. Make exposed metal edges and corners free of sharp edges and burrs and safe to touch. Fabricate doors of postal specialties to preclude binding, warping, or misalignment.
- B. Preassemble postal specialties in shop to greatest extent possible to minimize field assembly.
- C. Where dissimilar metals contact each other, protect against galvanic action by painting contact surfaces with bituminous coating or by applying other permanent separation as recommended by manufacturers of dissimilar metals.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Collection Boxes: Install collection boxes with centerline of mail slots not more than 48 inches above finished floor.

END OF SECTION 10 55 00.13

SECTION 12 32 00 - PRE FABRICATED WOOD CASEWORK

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Pre Fab Wood cabinets.
 - 2. Cabinet Hardware

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For casework. Include plans, elevations, details, and attachments to other work.
- C. Samples: For casework and hardware finishes.

PART 2 - PRODUCTS

2.1 CABINETS

- A. Manufacturers: Subject to compliance with requirements, provide product indicated on drawings. :
- B. Quality Standard: Provide cabinets that comply with KCMA A161.1.
 - 1. KCMA Certification: Provide cabinets with KCMA's "Certified Cabinet" seal affixed in a semiexposed location of each unit and showing compliance with KCMA A161.1.
- C. Door and Drawer Face Style: As Indicated on Drawings
 - 1. Door and Drawer Fronts: As indicated on drawings
- D. Cabinet Style: As indicated on drawings
 - 1. Face Frames:
 - a. 3/4-by-1-5/8-inch solid wood
- E. Exposed Cabinet End Finish: Wood veneer .

2.2 CABINET MATERIALS

- A. Hardwood Lumber: Kiln dried to 7 percent moisture content.
- B. Exposed Materials:
 - 1. Exposed Wood Species: As indicated on drawings
 - a. Select materials for compatible color and grain. Do not use two adjacent exposed surfaces that are noticeably dissimilar in color, grain, figure, or natural character markings.
 - b. Staining and Finish: As indicated on drawings

2.3 CABINET HARDWARE

- A. General: Manufacturer's standard units complying with BHMA A156.9, of type, size, style, material, and finish as indicated on drawings
- B. Pulls: As indicated on drawiongs
- C. Hinges: Concealed European-style, self-closing hinges.
- D. Drawer Guides: Epoxy-coated-metal, self-closing drawer guides; designed to prevent rebound when drawers are closed; with nylon-tired, ball-bearing rollers; and complying with BHMA A156.9, Type B05011 or Type B05091.
- E. Door and Drawer Bumpers: Self-adhering, clear silicone rubber.
 - 1. Doors: Provide one bumper at top and bottom of closing edge of each swinging door.
 - 2. Drawers: Provide one bumper on back side of drawer front at each corner.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install casework with no variations in adjoining surfaces; use concealed shims. Where casework abuts other finished work, scribe and cut for accurate fit. Provide filler strips, scribe strips, and moldings in finish to match casework.
- B. Install casework without distortion so doors and drawers fit the openings, are aligned, and are uniformly spaced. Complete installation of hardware and accessories as indicated.
- C. Install casework level and plumb to a tolerance of 1/8 inch in 8 feet.
- D. Fasten casework to adjacent units and to backing.

- 1. Fasten wall cabinets through back, near top and bottom, and at ends not more than 16 inches o.c.
 - a. Fasteners: [No. 10 wafer-head screws sized for not less than 1-1/2-inch penetration into wood framing, blocking, or hanging strips] [No. 10 wafer-head sheet metal screws through the metal backing or metal framing behind the wall finish] [Toggle bolts through the metal backing or metal framing behind the wall finish].
- E. Adjust hardware so doors and drawers are centered in openings and operate smoothly without warp or bind. Lubricate operating hardware as recommended by manufacturer.
- F. Clean casework on exposed and semiexposed surfaces. Touch up as required to restore damaged or soiled areas to match original factory finish, as approved by Architect.

END OF SECTION 12 35 30

SECTION 12 36 61.19 - QUARTZ AGGLOMERATE COUNTERTOPS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Quartz agglomerate countertops.
 - 2. Quartz agglomerate backsplashes.
 - 3. Quartz agglomerate end splashes.
 - 4. Quartz agglomerate apron fronts.

1.2 ACTION SUBMITTALS

- A. Product Data: For countertop materials.
- B. Shop Drawings: For countertops. Show materials, finishes, edge and backsplash profiles, methods of joining, and cutouts for plumbing fixtures.
- C. Samples: For each type of material exposed to view.

PART 2 - PRODUCTS

2.1 QUARTZ AGGLOMERATE COUNTERTOP MATERIALS

- A. Quartz Agglomerate: Solid sheets consisting of quartz aggregates bound together with a matrix of filled plastic resin and complying with ISFA 3-01.
 - 1. Manufacturers: Subject to compliance with requirements, provide product as indicated on drawings.
 - 2. Colors and Patterns: As indicated on drawings.
- B. Composite Wood Products: Products shall be made without urea formaldehyde.
- C. Particleboard: ANSI A208.1, Grade M-2.

2.2 FABRICATION

- A. Fabricate countertops according to quartz agglomerate manufacturer's written instructions and the AWI/AWMAC/WI's "Architectural Woodwork Standards."
 - 1. Grade: Custom.

- B. Configuration:
 - 1. Front: Straight, slightly eased at top.
 - 2. Backsplash: Straight, slightly eased at corner.
 - 3. End Splash: Matching backsplash.
- C. Countertops: 1/2-inch- thick, quartz agglomerate with front edge built up with same material.
- D. Backsplashes: 1/2-inch- thick, quartz agglomerate.
- E. Joints:
 - 1. Fabricate countertops without joints.
- F. Cutouts and Holes:
 - 1. Undercounter Plumbing Fixtures: Make cutouts for fixturesusing template or pattern furnished by fixture manufacturer. Form cutouts to smooth, even curves.

2.3 INSTALLATION MATERIALS

- A. Adhesive: Product recommended by quartz agglomerate manufacturer.
 - 1. Adhesives shall have a VOC content of 70 g/L or less.
- B. Sealant for Countertops: Comply with applicable requirements in Section 07 92 00 "Joint Sealants."

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Fasten countertops by screwing through corner blocks of base units into underside of countertop. Predrill holes for screws as recommended by manufacturer.
- B. Fasten subtops to cabinets by screwing through subtops into cornerblocks of base cabinets. Shim as needed to align subtops in a level plane.
- C. Secure countertops to subtops with adhesive according to quartz agglomerate manufacturer's written instructions.
- D. Bond joints with adhesive and draw tight as countertops are set. Mask areas of countertops adjacent to joints to prevent adhesive smears.
- E. Install backsplashes and end splashes by adhering to wall and countertops with adhesive.

- F. Install aprons to backing and countertops with adhesive.
- G. Complete cutouts not finished in shop. Mask areas of countertops adjacent to cutouts to prevent damage while cutting. Make cutouts to accurately fit items to be installed, and at right angles to finished surfaces unless beveling is required for clearance. Ease edges slightly to prevent snipping.
- H. Apply sealant to gaps at walls; comply with Section 07 92 00 "Joint Sealants."

END OF SECTION 12 36 61.19

SECTION 21 00 00 - COMMON WORK RESULTS FOR FIRE SUPPRESSION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Piping materials and installation instructions common to most piping systems.
 - 2. Mechanical sleeve seals.
 - 3. Sleeves.
 - 4. Escutcheons.
 - 5. Grout.
 - 6. Equipment installation requirements common to equipment sections.
 - 7. Painting and finishing.
 - 8. Supports and anchorages.

1.3 SUBMITTALS

- A. Product Data: For the following:
 - 1. Mechanical sleeve seals.
 - 2. Escutcheons.
- B. Welding certificates.

1.4 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
- B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

C. Electrical Characteristics for Fire-Suppression Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

1.6 COORDINATION

- A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for fire-suppression installations.
- B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.
- C. Coordinate requirements for access panels and doors for fire-suppression items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 8 Section "Access Doors and Frames."

PART 2 - PRODUCTS

2.1 PIPE, TUBE, AND FITTINGS

- A. Refer to individual Division 15 and Division 13 piping Sections for pipe, tube, and fitting materials and joining methods.
- B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.2 JOINING MATERIALS

- A. Refer to individual Division 15 and Division 13 piping Sections for special joining materials not listed below.
- B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.

- a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
- b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
- 2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.
- C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- D. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.
- E. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- F. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.3 MECHANICAL SLEEVE SEALS

- A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
 - 1. Manufacturers:
 - a. Metraflex Co.
 - b. Pipeline Seal and Insulator, Inc./Thunderline
 - 2. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 3. Pressure Plates: Stainless steel. Include two for each sealing element.
 - 4. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.4 SLEEVES

A. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.

2.5 ESCUTCHEONS

- A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.

- C. One-Piece, Cast-Brass Type: With set screw.
 - 1. Finish: Polished chrome-plated.
- D. One-Piece, Stamped-Steel Type: With set screw or spring clips and chrome-plated finish.

2.6 GROUT

- A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 - 1. Characteristics: Post-hardening, volume-adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.
 - 3. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

- A. Install piping according to the following requirements and Division 15 and Division 13 Sections specifying piping systems.
- B. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Install piping to allow application of insulation.
- J. Select system components with pressure rating equal to or greater than system operating pressure.
- K. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:

- 1. New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 - b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish.
 - c. Insulated Piping: One-piece, stamped-steel type with spring clips.
 - d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
 - e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type and set screw.
- L. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 1/2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 - 2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
 - 3. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 - a. Steel Pipe Sleeves: For pipes smaller than NPS 12.
 - 4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Division 7 Section "Joint Sealants" for materials and installation.
- M. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - 1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- N. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 7 Section "Through-Penetration Firestop Systems" for materials.
- O. Verify final equipment locations for roughing-in.
- P. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.2 PIPING JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 15 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- E. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- F. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
- G. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.

3.3 PAINTING

- A. Painting of fire-suppression systems, equipment, and components is specified in Division 9 Sections "Interior Painting" and "Exterior Painting."
- B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.4 ERECTION OF METAL SUPPORTS AND ANCHORAGES

- A. Refer to Division 5 Section "Metal Fabrications" for structural steel.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor fire-suppression materials and equipment.

C. Field Welding: Comply with AWS D1.1.

3.5 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

- A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor fire-suppression materials and equipment.
- B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.
- C. Attach to substrates as required to support applied loads.

3.6 GROUTING

- A. Mix and install grout for fire-suppression equipment base bearing surfaces, pump and other equipment base plates, and anchors.
- B. Clean surfaces that will come into contact with grout.
- C. Provide forms as required for placement of grout.
- D. Avoid air entrapment during placement of grout.
- E. Place grout, completely filling equipment bases.
- F. Place grout on concrete bases and provide smooth bearing surface for equipment.
- G. Place grout around anchors.
- H. Cure placed grout.

END OF SECTION 21 00 00

SECTION 21 12 00 - FIRE-SUPPRESSION STANDPIPES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Pipes, fittings, and specialties.
 - 2. Fire-protection valves.
 - 3. Hose connections.
 - 4. Fire-department connections.
 - 5. Alarm devices.
 - 6. Pressure gages.

1.2 SYSTEM DESCRIPTIONS

A. Manual Dry-Type, Class I Standpipe System: Includes NPS 2-1/2 hose connections. Does not have permanent water supply. Piping is dry. Water must be pumped into standpipes to satisfy demand.

1.3 PERFORMANCE REQUIREMENTS

- A. Fire-Suppression Standpipe System Component: Listed for 175-psig minimum working pressure.
- B. Delegated Design: Design fire-suppression standpipes, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
- C. Fire-suppression standpipe design shall be approved by authorities having jurisdiction.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Delegated-Design Submittal: For standpipe systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
- C. Qualification Data: For qualified Installer.
- D. Approved Standpipe Drawings: Working plans, prepared according to NFPA 14, that have been approved by authorities having jurisdiction, including hydraulic calculations if applicable.

- E. Welding certificates.
- F. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 14. Include "Contractor's Material and Test Certificate for Aboveground Piping" and "Contractor's Material and Test Certificate for Underground Piping."
- G. Field quality-control reports.
- H. Operation and maintenance data.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Installer's responsibilities include designing, fabricating, and installing fire-suppression standpipes and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.
- B. Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. NFPA Standards: Fire-suppression standpipe equipment, specialties, accessories, installation, and testing shall comply with NFPA 14, "Installation of Standpipe and Hose Systems."

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, and fitting materials, and for joining methods for specific services, service locations, and pipe sizes.

2.2 STEEL PIPE AND FITTINGS

- A. Schedule 10, Black-Steel Pipe: ASTM A 135., Pipe ends may be factory or field formed to match joining method.
- B. Schedule 40, Black-Steel Pipe: ASTM A 135. Pipe ends may be factory or field formed to match joining method.
- C. Uncoated, Gray-Iron Threaded Fittings: ASME B16.4, Class 125, standard pattern.

- D. Cast-Iron Flanges: ASME B16.1, Class 125.
- E. Steel Welding Fittings: ASTM A 234/A 234M and ASME B16.9.
- F. Grooved-Joint, Steel-Pipe Appurtenances:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International, Inc.
 - b. Tyco Fire & Building Products LP.
 - c. Victaulic Company.
 - 2. Pressure Rating: 250 psig minimum.
 - 3. Uncoated, Grooved-End Fittings for Steel Piping: ASTM A 47/A 47M, malleable-iron casting or ASTM A 536, ductile-iron casting; with dimensions matching steel pipe.
 - 4. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213, rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.

2.3 PIPING JOINING MATERIALS

- A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick.
 - 1. Class 125, Cast-Iron Flat-Face Flanges: Full-face gaskets.
- B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
- C. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.4 LISTED FIRE-PROTECTION VALVES

- A. General Requirements:
 - 1. Valves shall be UL listed or FM approved.
 - 2. Minimum Pressure Rating: 175 psig.
- B. Check Valves:
 - 1. Standard: UL 312.
 - 2. Pressure Rating: 250 psig minimum.
 - 3. Type: Swing check.
 - 4. Body Material: Cast iron.
 - 5. End Connections: Flanged or grooved.
- C. Bronze OS&Y Gate Valves:

- 1. Standard: UL 262.
- 2. Pressure Rating: 175 psig.
- 3. Body Material: Bronze.
- 4. End Connections: Threaded.
- D. Iron OS&Y Gate Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Valve, Inc.
 - b. Clow Valve Company; a division of McWane, Inc.
 - c. Mueller Co.; Water Products Division.
 - 2. Standard: UL 262.
 - 3. Pressure Rating: 250 psig minimum.
 - 4. Body Material: Cast or ductile iron.
 - 5. End Connections: Flanged or grooved.

2.5 HOSE CONNECTIONS

- A. Nonadjustable-Valve Hose Connections:
 - 1. Standard: UL 668 hose valve for connecting fire hose.
 - 2. Pressure Rating: 300 psig minimum.
 - 3. Material: Brass or bronze.
 - 4. Size: NPS 1-1/2 or NPS 2-1/2, as indicated.
 - 5. Inlet: Female pipe threads.
 - 6. Outlet: Male hose threads with lugged cap, gasket, and chain. Include hose valve threads according to NFPA 1963 and matching local fire-department threads.
 - 7. Pattern: Angle.
 - 8. Finish: Polished chrome plated.

2.6 FIRE-DEPARTMENT CONNECTIONS

- A. Flush-Type, Fire-Department Connection:
 - 1. Standard: UL 405.
 - 2. Type: Flush, for wall mounting.
 - 3. Pressure Rating: 175 psig minimum.
 - 4. Body Material: Corrosion-resistant metal.
 - 5. Inlets: Brass with threads according to NFPA 1963 and matching local fire-department sizes and threads. Include extension pipe nipples, brass lugged swivel connections, and check devices or clappers.
 - 6. Caps: Brass, lugged type, with gasket and chain.
 - 7. Escutcheon Plate: Rectangular, brass, wall type.

- 8. Outlet: With pipe threads.
- 9. Escutcheon Plate Marking: Similar to "STANDPIPE."
- 10. Finish: Rough brass or bronze.

2.7 ALARM DEVICES

- A. Alarm-device types shall match piping and equipment connections.
- B. Water-Flow Indicators:
 - 1. Standard: UL 346.
 - 2. Water-Flow Detector: Electrically supervised.
 - 3. Components: Two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.
 - 4. Type: Paddle operated.
 - 5. Pressure Rating: 250 psig.
 - 6. Design Installation: Horizontal or vertical.
- C. Valve Supervisory Switches:
 - 1. Standard: UL 346.
 - 2. Type: Electrically supervised.
 - 3. Components: Single-pole, double-throw switch with normally closed contacts.
 - 4. Design: Signals that controlled valve is in other than fully open position.

2.8 PRESSURE GAGES

- A. Standard: UL 393.
- B. Dial Size: 3-1/2- to 4-1/2-inch diameter.
- C. Pressure Gage Range: 0 to 300 psig.
- D. Water System Piping Gage: Include "WATER" or "AIR/WATER" label on dial face.

PART 3 - EXECUTION

3.1 PIPING INSTALLATION

A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated, as far as practical.

- 1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.
- B. Piping Standard: Comply with requirements in NFPA 14 for installation of fire-suppression standpipe piping.
- C. Install listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.
- D. Install drain valves on standpipes. Extend drain piping to outside of building.
- E. Install automatic (ball drip) drain valves to drain piping between fire-department connections and check valves. Drain to floor drain or outside building.
- F. Install alarm devices in piping systems.
- G. Install hangers and supports for standpipe system piping according to NFPA 14. Comply with requirements in NFPA 13 for hanger materials.
- H. Install pressure gages on riser or feed main and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with soft-metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they will not be subject to freezing.
- I. Drain dry-type standpipe system piping.
- J. Pressurize and check dry-type standpipe system piping.

3.2 JOINT CONSTRUCTION

- A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.
- B. Install unions adjacent to each valve in pipes NPS 2 and smaller.
- C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.
- D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
- F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.

- G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
- H. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.
- I. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.
 - 1. Shop weld pipe joints where welded piping is indicated. Do not use welded joints for galvanized-steel pipe.
- J. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.3 VALVE AND SPECIALTIES INSTALLATION

- A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 14 and authorities having jurisdiction.
- B. Install listed fire-protection shutoff valves supervised-open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.
- C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

3.4 HOSE-CONNECTION INSTALLATION

- A. Install hose connections adjacent to standpipes.
- B. Install freestanding hose connections for access and minimum passage restriction.
- C. Install NPS 2-1/2 hose connections with quick-disconnect NPS 2-1/2 by NPS 1-1/2 reducer adapter and flow-restricting device.

3.5 FIRE-DEPARTMENT CONNECTION INSTALLATION

A. Install wall-type, fire-department connections.

B. Install automatic (ball drip) drain valve at each check valve for fire-department connection.

3.6 IDENTIFICATION

- A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 14.
- B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Division 16 Section "Electrical Identification."

3.7 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - 3. Flush, test, and inspect standpipe systems according to NFPA 14, "System Acceptance" Chapter.
 - 4. Energize circuits to electrical equipment and devices.
 - 5. Coordinate with fire-alarm tests. Operate as required.
 - 6. Coordinate with fire-pump tests. Operate as required.
 - 7. Verify that equipment hose threads are same as local fire-department equipment.
- C. Fire-suppression standpipe system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

3.8 PIPING SCHEDULE

- A. Fire-suppression standpipe piping, shall be one of the following:
 - 1. Schedule 40, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
 - 2. Schedule 10, black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
 - 3. Schedule 10, black-steel pipe with plain ends; steel welding fittings; and welded joints.

END OF SECTION 21 12 00

SECTION 21 13 13 - WET-PIPE FIRE-SUPPRESSION SPRINKLERS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Pipes, fittings, and specialties.
 - 2. Fire-protection valves.
 - 3. Fire-department connections.
 - 4. Sprinklers.
 - 5. Alarm devices.
 - 6. Pressure gages.
- B. Related Sections:
 - 1. Division 21 Section "Fire-Suppression Standpipes" for standpipe piping.

1.2 SYSTEM DESCRIPTIONS

A. Wet-Pipe Sprinkler System: Automatic sprinklers are attached to piping containing water and that is connected to water supply through alarm valve. Water discharges immediately from sprinklers when they are opened. Sprinklers open when heat melts fusible link or destroys frangible device. Hose connections are included if indicated.

1.3 PERFORMANCE REQUIREMENTS

- A. Standard-Pressure Piping System Component: Listed for 175-psig minimum working pressure.
- B. Delegated Design: Design sprinkler system(s), including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
- C. Sprinkler system design shall be approved by authorities having jurisdiction.
 - 1. Sprinkler Occupancy Hazard Classifications:
 - a. Electrical Equipment Rooms: Ordinary Hazard, Group 1.
 - b. General Storage Areas: ordinary Hazard, Group 1.
 - c. Mechanical Equipment Rooms: Ordinary Hazard, Group 1.
 - d. Office and Public Areas: Light Hazard.
 - e. Residential Living Areas: Light Hazard.
 - f. Retail Areas: Ordinary Hazard, Group 1.

- 2. Minimum Density for Automatic-Sprinkler Piping Design:
 - a. Light-Hazard Occupancy: 0.10 gpm over 1500-sq. ft. area.
 - b. Ordinary-Hazard, Group 1 Occupancy: 0.15 gpm over 1500-sq. ft. area.
- 3. Maximum Protection Area per Sprinkler: Per UL listing.
- D. Each floor of the building shall be an independent zone. Provide a flow switch and valve with tamper switch at each floor location as it is connected to the fire protection main. Combine the drain connections and route to the exterior.
- E. The parking garage shall be a dry pipe system. See Section 21 13 16 for Dry-Pipe Fire Suppression Sprinklers.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: For wet-pipe and dry-pipe sprinkler systems. The parking garage shall be a dry pipe system. See Section 21 13 16 for Dry-Pipe Fire Suppression Sprinklers. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Wiring Diagrams: For power, signal, and control wiring.
- C. Delegated-Design Submittal: For sprinkler systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
- D. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction, including hydraulic calculations if applicable.
- E. Welding certificates.
- F. Operation and maintenance data.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Installer's responsibilities include designing, fabricating, and installing sprinkler systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.
 - a. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified professional engineer.

- B. Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. NFPA Standards: Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:
 - 1. NFPA 13, "Installation of Sprinkler Systems."

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

- A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, and fitting materials, and for joining methods for specific services, service locations, and pipe sizes.
- 2.2 STEEL PIPE AND FITTINGS
 - A. Schedule 40, Black-Steel Pipe: ASTM A 135, Pipe ends may be factory or field formed to match joining method.
 - B. Schedule 10, Black Steel Pipe: ASTM A 135. Pipe ends may be factory or field formed to match joining method.
 - C. Black-Steel Pipe Nipples: ASTM A 733, made of ASTM A 53/A 53M, standard-weight, seamless steel pipe with threaded ends.
 - D. Uncoated, Steel Couplings: ASTM A 865, threaded.
 - E. Uncoated, Gray-Iron Threaded Fittings: ASME B16.4, Class 125, standard pattern.
 - F. Malleable- or Ductile-Iron Unions: UL 860.
 - G. Cast-Iron Flanges: ASME 16.1, Class 125.
 - H. Steel Flanges and Flanged Fittings: ASME B16.5, Class 150.
 - I. Steel Welding Fittings: ASTM A 234/A 234M and ASME B16.9.
 - J. Grooved-Joint, Steel-Pipe Appurtenances:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- a. Anvil International, Inc.
- b. Tyco Fire & Building Products LP.
- c. Victaulic Company.
- 2. Pressure Rating: 175 psig minimum.
- 3. Uncoated, Grooved-End Fittings for Steel Piping: ASTM A 47/A 47M, malleable-iron casting or ASTM A 536, ductile-iron casting; with dimensions matching steel pipe.
- 4. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213, rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.

2.3 CPVC PIPE AND FITTINGS

- A. CPVC Pipe: ASTM F 442/F 442M and UL 1821, SDR 13.5, for 175-psig rated pressure at 150 deg F, with plain ends. Include "LISTED" and "CPVC SPRINKLER PIPE" markings.
- B. CPVC Fittings: UL listed or FM approved, for 175-psig rated pressure at 150 deg F, socket type. Include "LISTED" and "CPVC SPRINKLER FITTING" markings.
 - 1. NPS 3/4 to NPS 1-1/2: ASTM F 438 and UL 1821, Schedule 40, socket type.
 - 2. NPS 2 to NPS 3: ASTM F 439 and UL 1821, Schedule 80, socket type.
 - 3. CPVC-to-Metal Transition Fittings: CPVC, one piece, with dimensions equivalent to pipe; one end with threaded brass insert, and one socket end.
 - 4. Flanges: CPVC, one or two pieces.

2.4 PIPING JOINING MATERIALS

- A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick.
 - 1. Class 125, Cast-Iron Flat-Face Flanges: Full-face gaskets.
- B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
- C. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- D. Solvent Cements for Joining CPVC Piping and Tubing: ASTM F 493, solvent cement recommended by pipe and fitting manufacturer, and made for joining CPVC sprinkler pipe and fittings. Include cleaner or primer recommended by pipe and fitting manufacturer

2.5 LISTED FIRE-PROTECTION VALVES

- A. General Requirements:
 - 1. Valves shall be UL listed or FM approved.
 - 2. Minimum Pressure Rating: 175 psig.

- B. Check Valves:
 - 1. Standard: UL 312.
 - 2. Pressure Rating: 300 psig.
 - 3. Type: Swing check.
 - 4. Body Material: Cast iron.
 - 5. End Connections: Flanged or grooved.
- C. Bronze OS&Y Gate Valves:
 - 1. Standard: UL 262.
 - 2. Pressure Rating: 175 psig.
 - 3. Body Material: Bronze.
 - 4. End Connections: Threaded.
- D. Iron OS&Y Gate Valves:
 - 1. Standard: UL 262.
 - 2. Pressure Rating: 300 psig.
 - 3. Body Material: Cast or ductile iron.
 - 4. End Connections: Flanged or grooved.

2.6 TRIM AND DRAIN VALVES

- A. General Requirements:
 - 1. Standard: UL's "Fire Protection Equipment Directory" listing or "Approval Guide," published by FM Global, listing.
 - 2. Minimum Pressure Rating: 175 psig.

2.7 SPECIALTY VALVES

- A. General Requirements:
 - 1. Standard: UL's "Fire Protection Equipment Directory" listing or "Approval Guide," published by FM Global, listing.
 - 2. Minimum Pressure Rating: 175 psig.
 - 3. Body Material: Cast or ductile iron.
 - 4. Size: Same as connected piping.
 - 5. End Connections: Flanged or grooved.
- B. Alarm Valves:
 - 1. Standard: UL 193.
 - 2. Design: For horizontal or vertical installation.
 - 3. Include trim sets for bypass, drain, electrical sprinkler alarm switch, pressure gages, retarding chamber, and fill-line attachment with strainer.

- 4. Drip Cup Assembly: Pipe drain with check valve to main drain piping.
- C. Automatic (Ball Drip) Drain Valves:
 - 1. Standard: UL 1726.
 - 2. Pressure Rating: 175 psig minimum.
 - 3. Type: Automatic draining, ball check.
 - 4. Size: NPS 3/4.
 - 5. End Connections: Threaded.

2.8 FIRE-DEPARTMENT CONNECTIONS

- A. Flush-Type, Fire-Department Connection:
 - 1. Standard: UL 405.
 - 2. Type: Flush, for wall mounting.
 - 3. Pressure Rating: 175 psig minimum.
 - 4. Body Material: Corrosion-resistant metal.
 - 5. Inlets: Brass with threads according to NFPA 1963 and matching local fire-department sizes and threads. Include extension pipe nipples, brass lugged swivel connections, and check devices or clappers.
 - 6. Caps: Brass, lugged type, with gasket and chain.
 - 7. Escutcheon Plate: Rectangular, brass, wall type.
 - 8. Outlet: With pipe threads.
 - 9. Escutcheon Plate Marking: Similar to "AUTO SPKR."
 - 10. Finish: Rough brass or bronze.

2.9 SPRINKLERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Reliable Automatic Sprinkler Co., Inc.
 - 2. Tyco Fire & Building Products LP.
 - 3. Viking Corporation.
- B. General Requirements:
 - 1. Standard: UL's "Fire Protection Equipment Directory" listing or "Approval Guide," published by FM Global, listing.
 - 2. Pressure Rating for Automatic Sprinklers: 175 psig minimum.
- C. Automatic Sprinklers with Heat-Responsive Element:
 - 1. Early-Suppression, Fast-Response Applications: UL 1767.
 - 2. Nonresidential Applications: UL 199.

- 3. Characteristics: Nominal 1/2-inch orifice with Discharge Coefficient K of 5.6, and for "Ordinary" temperature classification rating unless otherwise indicated or required by application.
- D. Sprinkler Finishes:
 - 1. Chrome plated.
 - 2. Bronze.
 - 3. Painted.
- E. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.
 - 1. Ceiling Mounting: Chrome-plated steel, one piece, flat.
 - 2. Sidewall Mounting: Chrome-plated steel, one piece, flat.

2.10 ALARM DEVICES

- A. Alarm-device types shall match piping and equipment connections.
- B. Water-Motor-Operated Alarm:
 - 1. Standard: UL 753.
 - 2. Type: Mechanically operated, with Pelton wheel.
 - 3. Alarm Gong: Cast aluminum with red-enamel factory finish.
 - 4. Size: 10-inch diameter.
 - 5. Components: Shaft length, bearings, and sleeve to suit wall construction.
 - 6. Inlet: NPS 3/4.
 - 7. Outlet: NPS 1 drain connection.
- C. Water-Flow Indicators:
 - 1. Standard: UL 346.
 - 2. Water-Flow Detector: Electrically supervised.
 - 3. Components: Two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.
 - 4. Type: Paddle operated.
 - 5. Pressure Rating: 250 psig.
 - 6. Design Installation: Horizontal or vertical.
- D. Valve Supervisory Switches:
 - 1. Standard: UL 346.
 - 2. Type: Electrically supervised.
 - 3. Components: Single-pole, double-throw switch with normally closed contacts.

4. Design: Signals that controlled valve is in other than fully open position.

2.11 PRESSURE GAGES

- A. Standard: UL 393.
- B. Dial Size: 3-1/2- to 4-1/2-inch diameter.
- C. Pressure Gage Range: 0 to 300 psig.
- D. Water System Piping Gage: Include "WATER" or "AIR/WATER" label on dial face.
- E. Air System Piping Gage: Include "AIR" or "AIR/WATER" label on dial face.

PART 3 - EXECUTION

3.1 SERVICE-ENTRANCE PIPING

- A. Connect sprinkler piping to water-service piping for service entrance to building. Comply with requirements for exterior piping in Division 2 Section "Facility Fire-Suppression Water-Service Piping."
- B. Install shutoff valve, backflow preventer, pressure gage, drain, and other accessories indicated at connection to water-service piping.
- C. Install shutoff valve, check valve, pressure gage, and drain at connection to water service.

3.2 PIPING INSTALLATION

- A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated, as far as practical.
 - 1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.
- B. Piping Standard: Comply with requirements for installation of sprinkler piping in NFPA 13.
- C. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.
- D. Install unions adjacent to each valve in pipes NPS 2 and smaller.
- E. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

- F. Install "Inspector's Test Connections" in sprinkler system piping, complete with shutoff valve, and sized and located according to NFPA 13.
- G. Install sprinkler piping with drains for complete system drainage.
- H. Install sprinkler control valves, test assemblies, and drain risers adjacent to standpipes when sprinkler piping is connected to standpipes.
- I. Install automatic (ball drip) drain valve at each check valve for fire-department connection, to drain piping between fire-department connection and check valve. Install drain piping to and spill over floor drain or to outside building.
- J. Install alarm devices in piping systems.
- K. Install hangers and supports for sprinkler system piping according to NFPA 13. Comply with requirements for hanger materials in NFPA 13.
- L. Install pressure gages on riser or feed main, at each sprinkler test connection, and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with soft metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they will not be subject to freezing.
- M. Fill sprinkler system piping with water.
- N. Install electric heating cables and pipe insulation on sprinkler piping in areas subject to freezing.

3.3 JOINT CONSTRUCTION

- A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.
- B. Install unions adjacent to each valve in pipes NPS 2 and smaller.
- C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.
- D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
- F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.
- G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
- 1. Apply appropriate tape or thread compound to external pipe threads.
- 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
- H. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.
 - 1. Shop weld pipe joints where welded piping is indicated. Do not use welded joints for galvanized-steel pipe.
- I. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.
- J. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.4 VALVE AND SPECIALTIES INSTALLATION

- A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 13 and authorities having jurisdiction.
- B. Install listed fire-protection shutoff valves supervised open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.
- C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.
- D. Specialty Valves:
 - 1. General Requirements: Install in vertical position for proper direction of flow, in main supply to system.
 - 2. Alarm Valves: Include bypass check valve and retarding chamber drain-line connection.

3.5 SPRINKLER INSTALLATION

A. Install sprinklers in suspended ceilings in center of acoustical ceiling panels.

3.6 FIRE-DEPARTMENT CONNECTION INSTALLATION

- A. Install ground-type, fire-department connections.
- B. Install automatic (ball drip) drain valve at each check valve for fire-department connection.

3.7 IDENTIFICATION

- A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.
- B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Division 16 Section "Electrical Identification."

3.8 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - 3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
 - 4. Energize circuits to electrical equipment and devices.
 - 5. Start and run excess-pressure pumps.
 - 6. Coordinate with fire-alarm tests. Operate as required.
 - 7. Coordinate with fire-pump tests. Operate as required.
 - 8. Verify that equipment hose threads are same as local fire-department equipment.
- C. Sprinkler piping system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

3.9 CLEANING

- A. Clean dirt and debris from sprinklers.
- B. Remove and replace sprinklers with paint other than factory finish.

3.10 PIPING SCHEDULE

- A. Wet-pipe sprinkler mains up to zone valves in the system, shall be one of the following:
 - 1. Schedule 40, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
 - 2. Schedule 10, black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
 - 3. Schedule 10, black-steel pipe with plain ends; steel welding fittings; and welded joints.

- B. Wet-pipe sprinkler zone piping downstream of zone valves shall be the following:
 - 1. CPVC pipe; Schedule 40 CPVC fittings; and solvent-cemented joints may be used for light hazard and residential occupancies.

3.11 SPRINKLER SCHEDULE

- A. Use sprinkler types in subparagraphs below for the following applications:
 - 1. Rooms without Ceilings: Upright sprinklers.
 - 2. Rooms with Suspended Acoustical Ceilings: Semi-Recessed Pendent sprinklers.
 - 3. Wall Mounting: Sidewall sprinklers.
 - 4. Residential Units: Concealed sprinklers.
 - 5. Balconies: Sidewall sprinklers.
- B. Provide sprinkler types in subparagraphs below with finishes indicated.
 - 1. Concealed Sprinklers: Rough brass, with factory-painted white cover plate.
 - 2. Semi-Recessed Pendant Sprinklers: White, with white escutcheon.
 - 3. Sidewall Sprinklers: Chrome plated in finished spaces exposed to view.
 - 4. Uprignt Sprinklers: Brass.

END OF SECTION 21 13 13

SECTION 22 05 19 - METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Liquid-in-glass thermometers.
 - 2. Thermowells.
 - 3. Dial-type pressure gages.
 - 4. Gage attachments.

1.2 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 LIQUID-IN-GLASS THERMOMETERS

- A. Metal-Case, Industrial-Style, Liquid-in-Glass Thermometers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Palmer Wahl Instrumentation Group.
 - b. Trerice, H. O. Co.
 - c. Weiss Instruments, Inc.
 - 2. Standard: ASME B40.200.
 - 3. Case: Cast aluminum; 9-inch nominal size unless otherwise indicated.
 - 4. Case Form: Adjustable angle unless otherwise indicated.
 - 5. Tube: Glass with magnifying lens and blue or red organic liquid.
 - 6. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F.
 - 7. Window: Glass.
 - 8. Stem: Aluminum and of length to suit installation.
 - a. Design for Thermowell Installation: Bare stem.
 - 9. Connector: 1-1/4 inches, with ASME B1.1 screw threads.

10. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

2.2 THERMOWELLS

- A. Thermowells:
 - 1. Standard: ASME B40.200.
 - 2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
 - 3. Material for Use with Copper Tubing: CNR.
 - 4. Material for Use with Steel Piping: CRES.
 - 5. Type: Stepped shank unless straight or tapered shank is indicated.
 - 6. External Threads: NPS 1/2, NPS 3/4, or NPS 1, ASME B1.20.1 pipe threads.
 - 7. Internal Threads: 1/2, 3/4, and 1 inch, with ASME B1.1 screw threads.
 - 8. Bore: Diameter required to match thermometer bulb or stem.
 - 9. Insertion Length: Length required to match thermometer bulb or stem.
 - 10. Lagging Extension: Include on thermowells for insulated piping and tubing.
 - 11. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.
- B. Heat-Transfer Medium: Mixture of graphite and glycerin.

2.3 PRESSURE GAGES

- A. Direct-Mounted, Plastic-Case, Dial-Type Pressure Gages:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Marsh Bellofram.
 - b. Palmer Wahl Instrumentation Group.
 - c. Trerice, H. O. Co.
 - d. Weiss Instruments, Inc.
 - 2. Standard: ASME B40.100.
 - 3. Case: Sealed type; plastic; 4-1/2-inch nominal diameter.
 - 4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
 - 5. Pressure Connection: Brass, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
 - 6. Movement: Mechanical, with link to pressure element and connection to pointer.
 - 7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi .
 - 8. Pointer: Dark-colored metal.
 - 9. Window: plastic.
 - 10. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.

2.4 GAGE ATTACHMENTS

- A. Snubbers: ASME B40.100, brass; with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and piston-type surge-dampening device. Include extension for use on insulated piping.
- B. Valves: Brass ball, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install thermowells with socket extending to center of pipe and in vertical position in piping tees.
- B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.
- C. Install thermowells with extension on insulated piping.
- D. Fill thermowells with heat-transfer medium.
- E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.
- F. Install remote-mounted thermometer bulbs in thermowells and install cases on panels; connect cases with tubing and support tubing to prevent kinks. Use minimum tubing length.
- G. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.
- H. Install valve and snubber in piping for each pressure gage for fluids.
- I. Install thermometers in the following locations:
 - 1. Inlet and outlet of each water heater.
 - 2. Inlet and outlet of each domestic hot-water storage tank.
- J. Install pressure gages in the following locations:
 - 1. Building water service entrance into building.
 - 2. Inlet and outlet of each pressure-reducing valve.
 - 3. Suction and discharge of each domestic water pump.
- K. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.
- L. Adjust faces of meters and gages to proper angle for best visibility.

3.2 THERMOMETER SCALE-RANGE SCHEDULE

- A. Scale Range for Domestic Cold-Water Piping: 0 to 150 deg F.
- B. Scale Range for Domestic Hot-Water Piping: 20 to 240 deg F.

3.3 PRESSURE-GAGE SCALE-RANGE SCHEDULE

A. Scale Range for Domestic Water Piping: 0 to 160 psi .

END OF SECTION 22 05 19

SECTION 22 05 23 - GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following general-duty valves:
 - 1. Copper-alloy ball valves.
 - 2. Ferrous-alloy butterfly valves.
 - 3. Bronze check valves.
 - 4. Spring-loaded, lift-disc check valves.
- B. See Division 22 piping Sections for specialty valves applicable to those Sections only.

1.2 SUBMITTALS

A. Product Data: For each type of valve indicated. Include body, seating, and trim materials; valve design; pressure and temperature classifications; end connections; arrangement; dimensions; and required clearances. Include list indicating valve and its application. Include rated capacities; furnished specialties; and accessories.

1.3 QUALITY ASSURANCE

- A. ASME Compliance for Ferrous Valves: ASME B16.10 and ASME B16.34 for dimension and design criteria.
- B. NSF Compliance: NSF 61 for valve materials for potable-water service.

PART 2 - PRODUCTS

2.1 VALVES, GENERAL

- A. Refer to Part 3 "Valve Applications" Article for applications of valves.
- B. Bronze Valves: NPS 2 and Smaller: Threaded ends, unless otherwise indicated.
- C. Ferrous Valves: NPS 2-1/2 and Larger: Flanged ends, unless otherwise indicated.
- D. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- E. Valve Sizes: Same as upstream pipe, unless otherwise indicated.

- F. Valve Actuators:
 - 1. Handwheel: For valves other than quarter-turn types.
 - 2. Lever Handle: For quarter-turn valves NPS 6 and smaller, except plug valves.
- G. Extended Valve Stems: On insulated valves.
- H. Valve Flanges: ASME B16.1 for cast-iron valves, ASME B16.5 for steel valves, and ASME B16.24 for bronze valves.
- I. Valve Grooved Ends: AWWA C606.
 - 1. Solder Joint: With sockets according to ASME B16.18.
 - a. Caution: Use solder with melting point below 840 deg F for angle, check, gate, and globe valves; below 421 deg F for ball valves.
 - 2. Threaded: With threads according to ASME B1.20.1.
- J. Valve Bypass and Drain Connections: MSS SP-45.

2.2 COPPER-ALLOY BALL VALVES

- A. Manufacturers:
 - 1. Two-Piece, Copper-Alloy Ball Valves:
 - a. Conbraco Industries, Inc.; Apollo Div.
 - b. Crane Co.; Crane Valve Group; Stockham Div.
 - c. Red-White Valve Corp.
- B. Copper-Alloy Ball Valves, General: MSS SP-110.
- C. Two-Piece, Copper-Alloy Ball Valves: Bronze body with full-port, chrome-plated bronze ball; PTFE or TFE seats; and 600-psig minimum CWP rating and blowout-proof stem.

2.3 FERROUS-ALLOY BUTTERFLY VALVES

- A. Manufacturers:
 - 1. Flangeless, Ferrous-Alloy Butterfly Valves:
 - a. Bray International, Inc.
 - b. Crane Co.; Crane Valve Group; Center Line.
 - c. Crane Co.; Crane Valve Group; Stockham Div.
 - d. Red-White Valve Corp.

- B. Ferrous-Alloy Butterfly Valves, General: MSS SP-67, Type I, for tight shutoff, with disc and lining suitable for potable water, unless otherwise indicated.
- C. Flangeless, 200-psig CWP Rating, Ferrous-Alloy Butterfly Valves: Wafer type with one-piece stem.

2.4 BRONZE CHECK VALVES

- A. Manufacturers:
 - 1. Type 4, Bronze, Swing Check Valves with Nonmetallic Disc:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Red-White Valve Corp.
- B. Bronze Check Valves, General: MSS SP-80.
- C. Type 3, Class 200, Bronze, Swing Check Valves: Bronze body with bronze disc and seat.

2.5 SPRING-LOADED, LIFT-DISC CHECK VALVES

- A. Manufacturers:
 - 1. Type III, Globe Lift-Disc Check Valves:
 - a. Metraflex Co.
 - b. Val-Matic Valve & Mfg. Corp.
- B. Lift-Disc Check Valves, General: FCI 74-1, with spring-loaded bronze or alloy disc and bronze or alloy seat.
- C. Type III, Class 250, Globe Lift-Disc Check Valves: Globe style with cast-iron shell and flanged ends.

PART 3 - EXECUTION

3.1 VALVE APPLICATIONS

- A. Refer to piping Sections for specific valve applications. If valve applications are not indicated, use the following:
 - 1. Shutoff Service: Ball, butterfly valves.
 - 2. Throttling Service: Angle, ball, butterfly, or globe valves.
 - 3. Pump Discharge: Spring-loaded, lift-disc check valves.

- B. If valves with specified CWP ratings are not available, the same types of valves with higher CWP ratings may be substituted.
- C. Domestic Water Piping: Use the following types of valves:
 - 1. Ball Valves, NPS 2 and Smaller: Two-piece, 600-psig CWP rating, copper alloy.
 - 2. Butterfly Valves, NPS 2-1/2 and Larger: Flangeless, 200-psig CWP rating, ferrous alloy, with EPDM liner.
 - 3. Swing Check Valves, NPS 2 and Smaller: Type 4, Class 125, bronze.
 - 4. Spring-Loaded, Lift-Disc Check Valves, NPS 2-1/2 and Larger: Type III, Class 250, cast iron.
- D. Select valves, except wafer and flangeless types, with the following end connections:
 - 1. For Copper Tubing, NPS 2 and Smaller: Solder-joint or threaded ends.
 - 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged or threaded ends.
 - 3. For Copper Tubing, NPS 5 and Larger: Flanged ends.

3.2 VALVE INSTALLATION

- A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- C. Locate valves for easy access and provide separate support where necessary.
- D. Install valves in horizontal piping with stem at or above center of pipe.
- E. Install valves in position to allow full stem movement.
- F. Install check valves for proper direction of flow and as follows:
 - 1. Swing Check Valves: In horizontal position with hinge pin level.
 - 2. Dual-Plate Check Valves: In horizontal or vertical position, between flanges.
 - 3. Lift Check Valves: With stem upright and plumb.

3.3 JOINT CONSTRUCTION

- A. Refer to Division 22 Section "Common Work Results for Plumbing" for basic piping joint construction.
- B. Grooved Joints: Assemble joints with keyed coupling housing, gasket, lubricant, and bolts according to coupling and fitting manufacturer's written instructions.

C. Soldered Joints: Use ASTM B 813, water-flushable, lead-free flux; ASTM B 32, lead-free-alloy solder; and ASTM B 828 procedure, unless otherwise indicated.

3.4 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

END OF SECTION 22 05 23

SECTION 22 05 53 - IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Equipment labels.
 - 2. Pipe labels.
 - 3. Valve tags.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
- C. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Plastic Labels for Equipment:

- 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
- 2. Letter Color: Black.
- 3. Background Color: White.
- 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- 7. Fasteners: Stainless-steel rivets or self-tapping screws.
- 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.
- C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 inches high.

2.3 VALVE TAGS

- A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 - 1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Fasteners: Brass beaded chain.

- B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 - 1. Valve-tag schedule shall be included in operation and maintenance data.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

- A. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.
- B. Pipe Label Color Schedule:
 - 1. Domestic Water Piping:
 - a. Background Color: Green.
 - b. Letter Color: White.

- 2. Sanitary Waste and Storm Drainage Piping:
 - a. Background Color: Green.
 - b. Letter Color: White.

3.4 VALVE-TAG INSTALLATION

- A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.
- B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:
 - 1. Valve-Tag Size and Shape:
 - a. Cold Water: 1-1/2 inches, round.
 - b. Hot Water: 1-1/2 inches, round.
 - 2. Valve-Tag Color:
 - a. Cold Water: Natural.
 - b. Hot Water: Natural.
 - 3. Letter Color:
 - a. Cold Water: Black.
 - b. Hot Water: Black.

END OF SECTION 22 05 53

SECTION 22 07 19 - PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes piping insulation for the following items:
 - 1. Domestic cold-water piping.
 - 2. Domestic hot-water piping.
 - 3. Domestic recirculating hot-water piping.
 - 4. Sanitary waste and vent piping exposed in return air plenums.

1.2 SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied, if any).

1.3 QUALITY ASSURANCE

- A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.

1.4 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."
- B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.5 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- B. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- C. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- D. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- E. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Armacell LLC; AP Armaflex.
 - b. K-Flex USA; Insul-Tube.

2.2 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.
- B. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Armacell LLC; Armaflex 520 Adhesive.
 - b. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-75.
 - c. K-Flex USA; R-373 Contact Adhesive.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.

- 1. Verify that systems to be insulated have been tested and are free of defects.
- 2. Verify that surfaces to be insulated are clean and dry.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch- wide strips of tape, of same material as insulation jacket.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap.
 - 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above-ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Cleanouts.

3.4 PENETRATIONS

- A. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- B. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- C. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in Division 07 Section "Penetration Firestopping" for firestopping and fire-resistive joint sealers.
- D. Insulation Installation at Floor Penetrations:

- 1. Pipe: Install insulation continuously through floor penetrations.
- 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.5 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 - 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.
 - 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.6 PIPING INSULATION SCHEDULE, GENERAL

- A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
- B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:

- 1. Drainage piping located in crawl spaces.
- 2. Underground piping.
- 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.7 INDOOR PIPING INSULATION SCHEDULE

- A. Domestic Cold, Hot and Recirculated Hot Water:
 - 1. NPS 1-1/2 and Smaller: Insulation shall be the following:
 - a. Flexible Elastomeric: 1/2 inch thick.
 - 2. NPS 2 and Larger: Insulation shall be the following:
 - a. Flexible Elastomeric: 1 inch thick.
- B. Roof Drain and Overflow Drain Bodies:
 - 1. All Pipe Sizes: Insulation shall be[one of] the following:
 - a. Flexible Elastomeric: 1 inch thick.
- C. All Pipe Sizes: Insulation shall be the following:
- D. Flexible Elastomeric: 1 inch thick.
- E. Exposed PVC Sanitary Drains and Vents, within Return Air Plenums:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Flexible Elastomeric: 1/2 inch thick.

END OF SECTION 22 07 19

SECTION 22 11 16 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Under-building slab and aboveground domestic water pipes, tubes, fittings, and specialties inside the building.
 - 2. Water meters furnished by utility company for installation by Contractor.
 - 3. Sleeves and sleeve seals.

1.2 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Field quality-control reports.

1.3 QUALITY ASSURANCE

- A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF 14 for plastic, potable domestic water piping and components. Include marking "NSF-pw" on piping.
- C. Comply with NSF 61 for potable domestic water piping and components.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 COPPER TUBE AND FITTINGS

- A. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper.
 - 1. Wrought-Copper Solder-Joint Fittings: ASME B16.22, wrought-copper pressure fittings.
 - 2. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.
 - 3. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.

- 4. Copper Pressure-Seal-Joint Fittings:
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Viega; Plumbing and Heating Systems.
 - b. NPS 2 and Smaller: Wrought-copper fitting with EPDM-rubber O-ring seal in each end.
 - c. NPS 2-1/2 to NPS 4: Cast-bronze or wrought-copper fitting with EPDM-rubber O-ring seal in each end.
- B. Soft Copper Tube: ASTM B 88, Type K water tube, annealed temper.

2.3 PEX TUBE AND FITTINGS

- A. PEX Distribution System: ASTM F 877, SDR 9 tubing.
 - 1. Fittings for PEX Tube: ASTM F 1807, metal-insert type with copper or stainless-steel crimp rings and matching PEX tube dimensions.

2.4 PIPING JOINING MATERIALS

- A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free, unless otherwise indicated; full-face or ring type unless otherwise indicated.
- B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
- C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- D. Plastic, Pipe-Flange Gaskets, Bolts, and Nuts: Type and material recommended by piping system manufacturer unless otherwise indicated.

2.5 DIELECTRIC FITTINGS

- A. General Requirements: Assembly of copper alloy and ferrous materials or ferrous material body with separating nonconductive insulating material suitable for system fluid, pressure, and temperature.
- B. Dielectric Unions:
 - 1. Description:
 - a. Pressure Rating: 150 psig at 180 deg F.
 - b. End Connections: Solder-joint copper alloy and threaded ferrous.

- C. Dielectric Flanges:
 - 1. Description:
 - a. Factory-fabricated, bolted, companion-flange assembly.
 - b. Pressure Rating: 150 psig.
 - c. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.
- D. Dielectric Couplings:
 - 1. Description:
 - a. Galvanized-steel coupling.
 - b. Pressure Rating: 300 psig at 225 deg F.
 - c. End Connections: Female threaded.
 - d. Lining: Inert and noncorrosive, thermoplastic.

2.6 ESCUTCHEONS

A. One Piece, Cast Brass: Polished, chrome-plated finish with setscrews.

2.7 SLEEVES

A. Cast-Iron Wall Pipes: Fabricated of cast iron, and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

2.8 SLEEVE SEALS

- A. Description: Modular sealing element unit, designed for field assembly, used to fill annular space between pipe and sleeve.
 - 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Pressure Plates: Stainless steel.
 - 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Comply with requirements in Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."
- C. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve, inside the building at each domestic water service entrance. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for pressure gages and Division 22 Section "Domestic Water Piping Specialties" for drain valves and strainers.
- D. Install domestic water piping level and plumb.
- E. Rough-in domestic water piping for water-meter installation according to utility company's requirements.
- F. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
- G. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- H. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.
- I. Install piping adjacent to equipment and specialties to allow service and maintenance.
- J. Install piping to permit valve servicing.
- K. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than system pressure rating used in applications below unless otherwise indicated.
- L. Install piping free of sags and bends.
- M. Install fittings for changes in direction and branch connections.
- N. Install PEX piping with loop at each change of direction of more than 90 degrees.
- O. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.
- P. Install pressure gages on suction and discharge piping from each plumbing pump and packaged booster pump. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for pressure gages.

- Q. Install thermostats in hot-water circulation piping. Comply with requirements in Division 22 Section "Domestic Water Pumps" for thermostats.
- R. Install thermometers on inlet and outlet piping from each water heater. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers.

3.3 JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
- C. Soldered Joints: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."
- D. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.
- E. PEX Piping Joints: Join according to ASTM F 1807.
- F. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.4 VALVE INSTALLATION

- A. General-Duty Valves: Comply with requirements in Division 22 Section "General-Duty Valves for Plumbing Piping" for valve installations.
- B. Install balancing valve in each hot-water circulation return branch and discharge side of each pump and circulator. Set balancing valves partly open to restrict but not stop flow. Use ball valves for piping NPS 2 and smaller and butterfly valves for piping NPS 2-1/2 and larger. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for balancing valves.

3.5 DIELECTRIC FITTING INSTALLATION

- A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
- B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric unions.
- C. Dielectric Fittings for NPS 2-1/2 to NPS 4 : Use dielectric flanges.

3.6 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support products and installation.
 - 1. Vertical Piping: MSS Type 8 or 42, clamps.
 - 2. Individual, Straight, Horizontal Piping Runs:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 - 3. Base of Vertical Piping: MSS Type 52, spring hangers.
- B. Support vertical piping and tubing at base and at each floor.
- C. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.
- D. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
 - 2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
 - 3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 - 4. NPS 2-1/2: 108 inches with 1/2-inch rod.
 - 5. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
 - 6. NPS 6: 10 feet with 5/8-inch rod.
- E. Install supports for vertical copper tubing every 10 feet.
- F. Install vinyl-coated hangers for PEX piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1 and Smaller: 32 inches with 3/8-inch rod.
- G. Install hangers for vertical PEX piping every 48 inches.
- H. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer's written instructions.

3.7 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to equipment and machines to allow service and maintenance.
- C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.

- D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 - 1. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
 - 2. Plumbing Fixtures: Cold- and hot-water supply piping in sizes indicated, but not smaller than required by plumbing code. Comply with requirements in Division 22 plumbing fixture Sections for connection sizes.

3.8 SLEEVE SEAL INSTALLATION

- A. Install sleeve seals in sleeves in exterior concrete walls at water-service piping entries into building.
- B. Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble sleeve seal components and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.9 IDENTIFICATION

- A. Identify system components. Comply with requirements in Division 22 Section "Identification for Plumbing Piping and Equipment" for identification materials and installation.
- B. Label pressure piping with system operating pressure.

3.10 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Piping Inspections:
 - 1. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 - 2. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 - a. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 - b. Final Inspection: Arrange final inspection for authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
 - 3. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.

- 4. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- C. Piping Tests:
 - 1. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 - 2. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
 - 3. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - 4. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 - 5. Repair leaks and defects with new materials and retest piping or portion thereof until satisfactory results are obtained.
 - 6. Prepare reports for tests and for corrective action required.
- D. Domestic water piping will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

3.11 CLEANING

- A. Clean and disinfect potable domestic water piping as follows:
 - 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 - 2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 - a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 - b. Fill and isolate system according to either of the following:
 - 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 - 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
 - c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 - d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.

- B. Prepare and submit reports of purging and disinfecting activities.
- C. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.12 PIPING SCHEDULE

- A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
- B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.
- C. Under-building-slab, domestic water, building service piping, , shall be[one of] the following:
 - 1. Soft copper tube, ASTM B 88, Type K ; no joints below the slab.
- D. Aboveground domestic water piping, , shall be one of the following:
 - 1. Hard copper tube, ASTM B 88, Type L ; wrought- copper solder-joint fittings; and soldered joints.
 - 2. Hard copper tube, ASTM B 88, Type L ; copper pressure-seal-joint fittings; and pressure-sealed joints.
 - 3. PEX Tube, NPS 1 and smaller; fittings for PEX tube; and crimped joints. PEX Tube shall only be used for branch runouts that are not part of the recirculated hot water system.

END OF SECTION 22 11 16

SECTION 22 11 19 - DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following domestic water piping specialties:
 - 1. Backflow preventers.
 - 2. Balancing valves.
 - 3. Temperature-actuated water mixing valves.
 - 4. Strainers.
 - 5. Water hammer arresters.

1.2 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig , unless otherwise indicated.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Operation and maintenance data.

1.4 QUALITY ASSURANCE

- A. NSF Compliance:
 - 1. Comply with NSF 14, "Plastics Piping Components and Related Materials," for plastic domestic water piping components.
 - 2. Comply with NSF 61, "Drinking Water System Components Health Effects; Sections 1 through 9."

PART 2 - PRODUCTS

2.1 BACKFLOW PREVENTERS

- A. Reduced-Pressure-Principle Backflow Preventers :
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:

- a. Conbraco Industries, Inc.
- b. FEBCO; SPX Valves & Controls.
- c. Watts Industries, Inc.; Water Products Div.
- d. Zurn Plumbing Products Group; Wilkins Div.
- 2. Standard: ASSE 1013.
- 3. Operation: Continuous-pressure applications.
- 4. Pressure Loss: 12 psig maximum, through middle 1/3 of flow range.
- 5. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
- 6. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
- 7. Configuration: Designed for horizontal, straight through flow.
- 8. Accessories:
 - a. Valves: Ball type with threaded ends on inlet and outlet of NPS 2 and smaller; outside screw and yoke gate-type with flanged ends on inlet and outlet of NPS 2-1/2 and larger.
 - b. Air-Gap Fitting: ASME A112.1.2, matching backflow-preventer connection.

2.2 BALANCING VALVES

- A. Memory-Stop Balancing Valves :
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.
 - b. Crane Co.; Crane Valve Group; Crane Valves.
 - c. Red-White Valve Corp.
 - 3. Standard: MSS SP-110 for two-piece, copper-alloy ball valves.
 - 4. Pressure Rating: 400-psig minimum CWP.
 - 5. Size: NPS 2 or smaller.
 - 6. Body: Copper alloy.
 - 7. Port: Standard or full port.
 - 8. Ball: Chrome-plated brass.
 - 9. Seats and Seals: Replaceable.
 - 10. End Connections: Solder joint or threaded.
 - 11. Handle: Vinyl-covered steel with memory-setting device.

2.3 TEMPERATURE-ACTUATED WATER MIXING VALVES

A. Primary, Thermostatic, Water Mixing Valves :

- 1. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Lawler Manufacturing Company, Inc.
 - b. Symmons Industries, Inc.
- 2. Standard: ASSE 1017.
- 3. Pressure Rating: 125 psig.
- 4. Type: Exposed-mounting, thermostatically controlled water mixing valve.
- 5. Material: Bronze body with corrosion-resistant interior components.
- 6. Connections: Threaded union inlets and outlet.
- 7. Accessories: Manual temperature control, check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
- 8. Valve Pressure Rating: 125 psig minimum, unless otherwise indicated.
- 9. Valve Finish: Rough bronze.

2.4 STRAINERS FOR DOMESTIC WATER PIPING

- A. Y-Pattern Strainers :
 - 1. Pressure Rating: 125 psig minimum, unless otherwise indicated.
 - 2. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or FDA-approved, epoxy coating and for NPS 2-1/2 and larger.
 - 3. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
 - 4. Screen: Stainless steel with round perforations, unless otherwise indicated.
 - 5. Drain: Pipe plug.

2.5 WATER HAMMER ARRESTERS

- A. Water Hammer Arresters :
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Sioux Chief Manufacturing Company, Inc.
 - b. Watts Drainage Products Inc.
 - c. Zurn Plumbing Products Group; Specification Drainage Operation.
 - 2. Standard: ASSE 1010 or PDI-WH 201.
 - 3. Type: Copper tube with piston.
 - 4. Size: ASSE 1010, Sizes AA and A through F or PDI-WH 201, Sizes A through F.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.
- B. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.
 - 1. Locate backflow preventers in same room as connected equipment or system.
 - 2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe to floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are not acceptable for this application.
 - 3. Do not install bypass piping around backflow preventers.
- C. Install balancing valves in locations where they can easily be adjusted.
- D. Install temperature-actuated water mixing valves with check stops or shutoff valves on inlets and with shutoff valve on outlet.
 - 1. Install thermometers and water regulators if specified.
 - 2. Install cabinet-type units recessed in or surface mounted on wall as specified.
- E. Install Y-pattern strainers for water on supply side of each control valve, and pump.
- F. Install water hammer arresters in water piping according to PDI-WH 201.
- G. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping and specialties.
- H. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 - 1. Reduced-pressure-principle backflow preventers.
 - 2. Primary, thermostatic, water mixing valves.
 - 3. Supply-type, trap-seal primer valves.
- I. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.2 FIELD QUALITY CONTROL

- A. Perform the following tests and prepare test reports:
 - 1. Test each reduced-pressure-principle backflow preventer according to authorities having jurisdiction and the device's reference standard.

3.3 ADJUSTING

- A. Set field-adjustable flow of balancing valves.
- B. Set field-adjustable temperature set points of temperature-actuated water mixing valves.

END OF SECTION 22 11 19
SECTION 22 13 16 - SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Pipe, tube, and fittings.

1.2 PERFORMANCE REQUIREMENTS

- A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:
 - 1. Soil, Waste, and Vent Piping: 10-foot head of water.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Field quality-control reports.

1.4 QUALITY ASSURANCE

- A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF/ANSI 14, "Plastics Piping Systems Components and Related Materials," for plastic piping components. Include marking with "NSF-dwv" for plastic drain, waste, and vent piping and "NSF-sewer" for plastic sewer piping.

1.5 PROJECT CONDITIONS

- A. Interruption of Existing Sanitary Waste Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
 - 1. Notify Construction Manager no fewer than two days in advance of proposed interruption of sanitary waste service.
 - 2. Do not proceed with interruption of sanitary waste service without Construction Manager's written permission.

PART 2 - PRODUCTS

2.1 PVC PIPE AND FITTINGS

- A. Solid-Wall PVC Pipe: ASTM D 2665, drain, waste, and vent.
- B. PVC Socket Fittings: ASTM D 2665, made to ASTM D 3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.
- C. Adhesive Primer: ASTM F 656.
- D. Solvent Cement: ASTM D 2564.

PART 3 - EXECUTION

3.1 EARTH MOVING

A. Comply with requirements for excavating, trenching, and backfilling specified in Division 31 Section "Earth Moving."

3.2 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.

- I. Install piping to allow application of insulation.
- J. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- K. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.
- L. Install soil and waste drainage and vent piping at the following minimum slopes unless otherwise indicated:
 - 1. Building Sanitary Drain: 1/4" per foot slope where possible, but not less than 1/8" per foot slope downward in direction of flow.
 - 2. Vent Piping: 1/8" per foot slope down toward vertical fixture vent or toward vent stack.
- M. Install aboveground PVC piping according to ASTM D 2665.
- N. Install underground PVC piping according to ASTM D 2321.
- O. Install force mains at elevations indicated.
- P. Plumbing Specialties:
 - 1. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers in sanitary drainage gravity-flow piping. Install cleanout fitting with closure plug inside the building in sanitary drainage force-main piping. Comply with requirements for cleanouts specified in Division 22 Section "Sanitary Waste Piping Specialties."
 - 2. Install drains in sanitary drainage gravity-flow piping. Comply with requirements for drains specified in Division 22 Section "Sanitary Waste Piping Specialties."
- Q. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.
- R. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."

- S. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."
- T. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 22 Section "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

- A. Plastic Piping, Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. PVC Piping: Join according to ASTM D 2855 and ASTM D 2665 Appendixes.

3.4 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements for pipe hanger and support devices and installation specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."
 - 1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
 - 2. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
 - 3. Vertical Piping: MSS Type 8 or Type 42, clamps.
 - 4. Install individual, straight, horizontal piping runs:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
- B. Support horizontal piping and tubing within 12 inches of each fitting and coupling.
- C. Support vertical piping and tubing at base and at each floor.
- D. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.
- E. Install hangers for PVC piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 and NPS 2: 48 inches with 3/8-inch rod.
 - 2. NPS 3: 48 inches with 1/2-inch rod.
 - 3. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
 - 4. NPS 6 and NPS 8: 48 inches with 3/4-inch rod.
 - 5. NPS 10 and NPS 12: 48 inches with 7/8-inch rod.
- F. Install supports for vertical PVC piping every 48 inches.

G. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.5 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.
- C. Connect drainage and vent piping to the following:
 - 1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
 - 2. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
 - 3. Comply with requirements for cleanouts and drains specified in Division 22 Section "Sanitary Waste Piping Specialties."
 - 4. Equipment: Connect drainage piping as indicated. Provide shutoff valve if indicated and union for each connection. Use flanges instead of unions for connections NPS 2-1/2 and larger.
- D. Connect force-main piping to the following:
 - 1. Sanitary Sewer: To exterior force main.
 - 2. Sewage Pump: To sewage pump discharge.
- E. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.

3.6 IDENTIFICATION

A. Identify exposed sanitary waste and vent piping. Comply with requirements for identification specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.7 FIELD QUALITY CONTROL

- A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 - 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 - 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

- B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
- C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 - 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 - 2. Leave uncovered and unconcealed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - 3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping except outside leaders on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.
 - 4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg. Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.
 - 5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
 - 6. Prepare reports for tests and required corrective action.
- E. Test force-main piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 - 1. Leave uncovered and unconcealed new, altered, extended, or replaced force-main piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - 2. Cap and subject piping to static-water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 - 3. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
 - 4. Prepare reports for tests and required corrective action.

3.8 CLEANING AND PROTECTION

A. Clean interior of piping. Remove dirt and debris as work progresses.

- B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
- C. Place plugs in ends of uncompleted piping at end of day and when work stops.
- D. Exposed PVC Piping: Protect plumbing vents exposed to sunlight with two coats of water-based latex paint to match adjacent roof surface color.

3.9 PIPING SCHEDULE

- A. Aboveground, soil and waste piping shall be the following:
 - 1. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
- B. Aboveground, vent piping shall be the following:
 - 1. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
- C. Underground, soil, waste, and vent piping shall be the following:
 - 1. Solid wall PVC pipe, PVC socket fittings, and solvent-cemented joints.

END OF SECTION 22 13 16

SECTION 22 13 19 - SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and accessories for grease interceptors.

1.2 QUALITY ASSURANCE

A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.

PART 2 - PRODUCTS

2.1 Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one the the manufacturers listed on the Drawings.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 - 1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 - 2. Locate at each change in direction of piping greater than 45 degrees.
 - 3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
 - 4. Locate at base of each vertical soil and waste stack.
- B. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.
- C. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.
- D. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.

- 1. Position floor drains for easy access and maintenance.
- 2. Set floor drains below elevation of surrounding finished floor to allow floor drainage. Set with grates depressed according to the following drainage area radii:
 - a. Radius, 30 Inches or Less: Equivalent to 1 percent slope, but not less than 1/4-inch total depression.
 - b. Radius, 30 to 60 Inches: Equivalent to 1 percent slope.
 - c. Radius, 60 Inches or Larger: Equivalent to 1 percent slope, but not greater than 1-inch total depression.
- 3. Install floor-drain flashing collar or flange so no leakage occurs between drain and adjoining flooring. Maintain integrity of waterproof membranes where penetrated.
- 4. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.
- E. Install flashing fittings on sanitary stack vents and vent stacks that extend through roof.
- F. Assemble open drain fittings and install with top of hub 2 inches above floor.
- G. Install deep-seal traps on floor drains and other waste outlets, if indicated.
- H. Install floor-drain, trap-seal primer fittings on inlet to floor drains that require trap-seal primer connection.
 - 1. Exception: Fitting may be omitted if trap has trap-seal primer connection.
 - 2. Size: Same as floor drain inlet.
- I. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.
- J. Install sleeve flashing device with each riser and stack passing through floors with waterproof membrane.
- K. Install grease interceptors, including trapping, venting, and flow-control fitting, according to authorities having jurisdiction and with clear space for servicing.
 - 1. Install cleanout immediately downstream from interceptors not having integral cleanout on outlet.
- L. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to equipment to allow service and maintenance.

C. Grease Interceptors: Connect inlet and outlet to unit, and connect flow-control fitting and vent to unit inlet piping.

3.3 **PROTECTION**

- A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.
- B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 22 13 19

SECTION 22 14 13 - STORM DRAINAGE PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Pipe, tube, and fittings.

1.2 PERFORMANCE REQUIREMENTS

- A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:
 - 1. Storm Drainage Piping: 10-foot head of water.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Field quality-control reports.

1.4 QUALITY ASSURANCE

- A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF/ANSI 14, "Plastics Piping System Components and Related Materials," for plastic piping components. Include marking with "NSF-drain" for plastic drain piping and "NSF-sewer" for plastic sewer piping.

1.5 PROJECT CONDITIONS

- A. Interruption of Existing Storm-Drainage Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
 - 1. Notify Construction Manager no fewer than two days in advance of proposed interruption of storm-drainage service.
 - 2. Do not proceed with interruption of storm-drainage service without Construction Manager's written permission.

PART 2 - PRODUCTS

2.1 PVC PIPE AND FITTINGS

- A. Solid-Wall PVC Pipe: ASTM D 2665, drain, waste, and vent.
- B. PVC Socket Fittings: ASTM D 2665, made to ASTM D 3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.
- C. Adhesive Primer: ASTM F 656.
 - 1. Use adhesive primer that has a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- D. Solvent Cement: ASTM D 2564.
 - 1. Use PVC solvent cement that has a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

PART 3 - EXECUTION

3.1 EARTH MOVING

A. Comply with requirements for excavating, trenching, and backfilling specified in Division 31 Section "Earth Moving."

3.2 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations from layout are approved on coordination drawings.
- B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.

STORM DRAINAGE PIPING

- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Install piping to allow application of insulation.
- J. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- K. Make changes in direction for storm drainage piping using appropriate branches, bends, and long-sweep bends. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- L. Lay buried building storm drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.
- M. Install storm drainage piping at the following minimum slopes unless otherwise indicated:
 - 1. Building Storm Drain: Slope 1/4" per foot where possible, but not less than 1/8" per foot downward in direction of flow.
- N. Install aboveground PVC piping according to ASTM D 2665.
- O. Install underground PVC piping according to ASTM D 2321.
- P. Install force mains at elevations indicated.
- Q. Plumbing Specialties:
 - 1. Install cleanouts at grade and extend to where building storm drains connect to building storm sewers in storm drainage gravity-flow piping. Install cleanout fitting with closure plug inside the building in storm drainage force-main piping. Comply with requirements for cleanouts specified in Division 22 Section "Storm Drainage Piping Specialties."
 - 2. Install drains in storm drainage gravity-flow piping. Comply with requirements for drains specified in Division 22 Section "Storm Drainage Piping Specialties."
- R. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.
- S. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."

- T. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."
- U. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 22 Section "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

- A. Plastic, Nonpressure-Piping, Solvent-Cemented Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. PVC Piping: Join according to ASTM D 2855 and ASTM D 2665 Appendixes.

3.4 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements for seismic-restraint devices specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- B. Comply with requirements for pipe hanger and support devices and installation specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."
 - 1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
 - 2. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
 - 3. Vertical Piping: MSS Type 8 or Type 42, clamps.
 - 4. Individual, Straight, Horizontal Piping Runs:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 - 5. Support horizontal piping and tubing within 12 inches of each fitting, valve, and coupling.
 - 6. Support vertical piping and tubing at base and at each floor.
 - 7. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.
 - 8. Install hangers for PVC piping with the following maximum horizontal spacing and minimum rod diameters:
 - a. NPS 1-1/2 and NPS 2: 48 inches with 3/8-inch rod.
 - b. NPS 3: 48 inches with 1/2-inch rod.
 - c. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
 - d. NPS 6 and NPS 8: 48 inches with 3/4-inch rod.
 - e. NPS 10 and NPS 12: 48 inches with 7/8-inch rod.

- 9. Install supports for vertical PVC piping every 48 inches.
- 10. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.5 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect interior storm drainage piping to exterior storm drainage piping. Use transition fitting to join dissimilar piping materials.
- C. Connect storm drainage piping to roof drains and storm drainage specialties.
 - 1. Install test tees (wall cleanouts) in conductors near floor, and floor cleanouts with cover flush with floor.
 - 2. Comply with requirements for cleanouts and drains specified in Division 22 Section "Storm Drainage Piping Specialties."
 - 3. Connect force-main piping to the following:
 - a. Storm Sewer: To exterior force main.
 - b. Sump Pumps: To sump pump discharge.
 - 4. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.

3.6 IDENTIFICATION

A. Identify exposed storm drainage piping. Comply with requirements for identification specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.7 FIELD QUALITY CONTROL

- A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 - 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in.
 - 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
 - 3. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
 - 4. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
 - 5. Test storm drainage piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:

- a. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
- b. Leave uncovered and unconcealed new, altered, extended, or replaced storm drainage piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
- c. Test Procedure: Test storm drainage piping, except outside leaders, on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts until completion of inspection, water level must not drop. Inspect joints for leaks.
- d. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
- e. Prepare reports for tests and required corrective action.
- 6. Test force-main piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 - a. Leave uncovered and unconcealed new, altered, extended, or replaced force-main piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - b. Cap and subject piping to static-water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 - c. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
 - d. Prepare reports for tests and required corrective action.

3.8 CLEANING AND PROTECTION

- A. Clean interior of piping. Remove dirt and debris as work progresses.
- B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
- C. Place plugs in ends of uncompleted piping at end of day and when work stops.

3.9 PIPING SCHEDULE

- A. Aboveground storm drainage piping shall be the following:
 - 1. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
 - 2. Underground storm drainage piping shall be the following:
 - a. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.

END OF SECTION 22 14 13

SECTION 22 14 23 - STORM DRAINAGE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 SUBMITTALS

A. Product Data: For each type of product indicated.

1.2 QUALITY ASSURANCE

A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.

PART 2 - PRODUCTS

2.1 Basis-of-Design Product: Subject to compliance with requirements, provide the products indicated on Drawings or a comparable product by one of the manufacturers listed on the Drawings.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install roof drains at low points of roof areas according to roof membrane manufacturer's written installation instructions. Roofing materials are specified in Division 07 Sections.
 - 1. Install flashing collar or flange of roof drain to prevent leakage between drain and adjoining roofing. Maintain integrity of waterproof membranes where penetrated.
 - 2. Install expansion joints, if indicated, in roof drain outlets.
 - 3. Position roof drains for easy access and maintenance.
- B. Install cleanouts in aboveground piping and building drain piping according to the following instructions unless otherwise indicated:
 - 1. Use cleanouts the same size as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 - 2. Locate cleanouts at each change in direction of piping greater than 45 degrees.
 - 3. Locate cleanouts at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
 - 4. Locate cleanouts at base of each vertical soil and waste stack.

- C. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.
- D. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.
- E. Install test tees in vertical conductors and near floor.
- F. Install wall cleanouts in vertical conductors. Install access door in wall if indicated.
- G. Install trench drains at low points of surface areas to be drained. Set grates of drains flush with finished surface unless otherwise indicated.
- H. Install sleeve flashing device with each conductor passing through floors with waterproof membrane.

3.2 CONNECTIONS

A. Comply with requirements for piping specified in Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

3.3 PROTECTION

- A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.
- B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 22 14 23

SECTION 22 40 00 - PLUMBING FIXTURES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Plumbing fixtures and installation requirements.

1.2 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Operation and maintenance data.

1.3 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Regulatory Requirements: Comply with requirements in ICC A117.1, "Accessible and Usable Buildings and Facilities" for plumbing fixtures for people with disabilities.
- C. Regulatory Requirements: Comply with requirements in Public Law 102-486, "Energy Policy Act," about water flow and consumption rates for plumbing fixtures.
- D. NSF Standard: Comply with NSF 61, "Drinking Water System Components--Health Effects," for fixture materials that will be in contact with potable water.
- E. Select combinations of fixtures and trim, faucets, fittings, and other components that are compatible.

PART 2 - PRODUCTS

2.1 PLUMBING FIXTURES

A. See Schedule on the Drawings for Approved Fixtures and Manufacturers

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Assemble plumbing fixtures, trim, fittings, and other components according to manufacturers' written instructions.
- B. Install off-floor supports, affixed to building substrate, for wall-mounting fixtures.
 - 1. Use carrier supports with waste fitting and seal for back-outlet fixtures.
 - 2. Use carrier supports without waste fitting for fixtures with tubular waste piping.
 - 3. Use chair-type carrier supports with rectangular steel uprights for accessible fixtures.
- C. Install back-outlet, wall-mounting fixtures onto waste fitting seals and attach to supports.
- D. Install floor-mounting fixtures on closet flanges or other attachments to piping or building substrate.
- E. Install wall-mounting fixtures with tubular waste piping attached to supports.
- F. Install fixtures level and plumb according to roughing-in drawings.
- G. Install water-supply piping with stop on each supply to each fixture to be connected to water distribution piping. Attach supplies to supports or substrate within pipe spaces behind fixtures. Install stops in locations where they can be easily reached for operation.
- H. Install trap and tubular waste piping on drain outlet of each fixture to be directly connected to sanitary drainage system.
- I. Install tubular waste piping on drain outlet of each fixture to be indirectly connected to drainage system.
- J. Install flushometer valves for accessible water closets and urinals with handle mounted on wide side of compartment. Install other actuators in locations that are easy for people with disabilities to reach.
- K. Install tanks for accessible, tank-type water closets with lever handle mounted on wide side of compartment.
- L. Install toilet seats on water closets.
- M. Install faucet-spout fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.
- N. Install water-supply flow-control fittings with specified flow rates in fixture supplies at stop valves.

- O. Install faucet flow-control fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.
- P. Install shower flow-control fittings with specified maximum flow rates in shower arms.
- Q. Install traps on fixture outlets.
 - 1. Exception: Omit trap on fixtures with integral traps.
 - 2. Exception: Omit trap on indirect wastes, unless otherwise indicated.
- R. Install disposer in outlet of each sink indicated to have disposer. Install switch where indicated or in wall adjacent to sink if location is not indicated.
- S. Connect inlet pipe to dishwasher and outlet hose to disposer.
- T. Install hot-water dispensers in back top surface of sink or in countertop with spout over sink.
- U. Install escutcheons at piping wall and ceiling penetrations in exposed, finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding fittings. Escutcheons are specified in Division 22 Section "Common Work Results for Plumbing."
- V. Set bathtubs and showers in leveling bed of cement grout.
- W. Seal joints between fixtures and walls, floors, and countertops using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Sealants are specified in Division 07 Section "Joint Sealants."

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
- C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

A. Verify that installed plumbing fixtures are categories and types specified for locations where installed.

- B. Check that plumbing fixtures are complete with trim, faucets, fittings, and other specified components.
- C. Inspect installed plumbing fixtures for damage. Replace damaged fixtures and components.
- D. Test installed fixtures after water systems are pressurized for proper operation. Replace malfunctioning fixtures and components, then retest. Repeat procedure until units operate properly.
- E. Install fresh batteries in sensor-operated mechanisms.

3.4 **PROTECTION**

- A. Provide protective covering for installed fixtures and fittings.
- B. Do not allow use of plumbing fixtures for temporary facilities unless approved in writing by Owner.

END OF SECTION 22 40 00

SECTION 23 05 53 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Equipment labels.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.3 COORDINATION

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

- A. Plastic Labels for Equipment:
 - 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
 - 2. Letter Color: Black.
 - 3. Background Color: White.
 - 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
 - 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 - 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 7. Fasteners: Stainless-steel rivets or self-tapping screws.
 - 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

- B. Label Content: Include equipment's Drawing designation or unique equipment number.
- C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

END OF SECTION 23 05 53

SECTION 23 05 93 - TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Testing and Balancing of Air Systems

1.2 DEFINITIONS

- A. AABC: Associated Air Balance Council.
- B. NEBB: National Environmental Balancing Bureau.
- C. TAB: Testing, adjusting, and balancing.
- D. TABB: Testing, Adjusting, and Balancing Bureau.
- E. TAB Specialist: An entity engaged to perform TAB Work.

1.3 SUBMITTALS

- A. Strategies and Procedures Plan: Within 30 days of Contractor's Notice to Proceed, submit TAB strategies and step-by-step procedures as specified in "Preparation" Article.
- B. Final Report: Certified TAB reports.

1.4 QUALITY ASSURANCE

- A. TAB Contractor Qualifications: Engage a TAB entity certified by AABC, .
 - 1. TAB Field Supervisor: Employee of the TAB contractor and certified by AABC, NEEB or TABB.
- B. TAB Contractor shall be an independent agency separate from all other contractors performing work on the project.
 - 1. TAB Field Supervisor: Employee of the TAB contractor and certified by AABC.
 - 2. TAB Technician: Employee of the TAB contractor and who is certified by AABC as a TAB technician.
- C. Certify TAB field data reports and perform the following:

- 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
- 2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification.
- D. TAB Report Forms: Use standard TAB contractor's forms approved by Engineer.
- E. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, "Instrumentation."

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION AND PREPARATION

- A. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.
- B. Verify the following work is complete prior to performing TAB:
 - 1. Permanent electrical-power wiring is complete.
 - 2. Hydronic systems are filled, clean, and free of air.
 - 3. Automatic temperature-control systems are operational.
 - 4. Equipment and duct access doors are securely closed.
 - 5. Balance, smoke, and fire dampers are open.
 - 6. Isolating and balancing valves are open and control valves are operational.
 - 7. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
 - 8. Windows and doors can be closed so indicated conditions for system operations can be met.
- C. Examine the following work while performing TAB:
 - 1. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.
 - 2. Examine systems for installed balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are accessible.
 - 3. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.
 - 4. Examine strainers. Verify that startup screens are replaced by permanent screens with indicated perforations.

- 5. Examine three-way valves for proper installation for their intended function of diverting or mixing fluid flows.
- 6. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
- 7. Examine system pumps to ensure absence of entrained air in the suction piping.
- 8. Examine operating safety interlocks and controls on HVAC equipment.
- 9. Examine the sequencing of all equipment for proper operation through temperature controls.

3.2 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system according to the procedures contained in ASHRAE 111 and in this Section.
 - 1. Comply with requirements in ASHRAE 62.1-2004, Section 7.2.2, "Air Balancing."
- B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 - 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
 - 2. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Division 23 Section "HVAC Insulation."
- C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.

3.3 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.
- B. For variable-air-volume systems, develop a plan to simulate diversity.
- C. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.
- D. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.
- E. Check dampers for proper position to achieve desired airflow path.
- F. Check for airflow blockages.
- G. Check condensate drains for proper connections and functioning.
- H. Check for proper sealing of air-handling-unit components.

I. Verify that air duct system is sealed as specified in Division 23 Section "Metal Ducts."

3.4 TOLERANCES

- A. Set HVAC system's air flow rates and water flow rates within the following tolerances:
 - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 5 percent.
 - 2. Air Outlets and Inlets: Plus or minus 10 percent.

3.5 FINAL REPORT

- A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 - 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 - 2. Include a list of instruments used for procedures, along with proof of calibration.
- B. General Report Data: In addition to form titles and entries, include the following data:
 - 1. Title page.
 - 2. Name and address of the TAB contractor.
 - 3. Project name.
 - 4. Project location.
 - 5. Architect's name and address.
 - 6. Engineer's name and address.
 - 7. Contractor's name and address.
 - 8. Report date.
 - 9. Signature of TAB supervisor who certifies the report.
 - 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
 - 11. Summary of contents including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
 - 12. Nomenclature sheets for each item of equipment.
 - 13. Data for all equipment, including manufacturer's name, model number.
 - 14. Notes to explain why certain final data in the body of reports vary from indicated values.
 - 15. Provide measurements and adjustments made indicated by each equipment type in the Schedules.

3.6 TAB SCHEDULE

A. Motors

- 1. Manufacturer's name, model number, and serial number.
- 2. Motor horsepower rating.
- 3. Motor rpm.
- 4. Efficiency rating.
- 5. Nameplate and measured voltage, each phase.
- 6. Nameplate and measured amperage, each phase.
- 7. Starter thermal-protection-element rating.
- 8. For motors driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass of the controller to prove proper operation.
- B. Air Handler Units
 - 1. Verify proper rotation of fans.
 - 2. Measure fan inlet and outlet and total static pressure at design conditions.
 - 3. Measure static pressure across each component that makes up an air-handling unit.
 - 4. Report the cleanliness status of filters and the time static pressures are measured.
 - 5. Measure total airflow using Pitot-tube traverse measurements in supply ducts and adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 - 6. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.
 - 7. Set outdoor-air dampers at required airflow for design conditions.
 - 8. Record final fan-performance data.
 - 9. Set building relief dampers to maintain positive 0.125" w.c. at design conditions.
- C. Exhaust Air Fans and Hoods
 - 1. Verify proper rotation of fans.
 - 2. Measure inlet and outlet static pressure.
 - 3. Total fan static pressure at design conditions.
 - 4. Total airflow.
 - 5. Operating Amperes of fans unit at design conditions.
- D. Air Outlets and Inlets
 - 1. Adjust air outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using branch volume dampers rather than extractors and the dampers at air terminals.
 - 2. Adjust patterns of adjustable outlets for proper distribution without drafts.
 - 3. Record actual locations of device and balancing damper.
- E. Heat-Transfer Coils

- 1. Measure, adjust, and record the following data for each refrigerant coil:
 - a. Dry-bulb temperature of entering and leaving air.
 - b. Wet-bulb temperature of entering and leaving air.
 - c. Airflow.
 - d. Air pressure drop.
 - e. Refrigerant suction pressure and temperature.

END OF SECTION 23 05 93

SECTION 23 07 13 - DUCT INSULATION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes insulating the following duct services:
 - 1. Indoor, supply air.
 - 2. Indoor, outdoor air.
 - 3. Outdoor, supply and return air.

B. Related Sections:

- 1. Division 23 Section "HVAC Equipment Insulation."
- 2. Division 23 Section "HVAC Piping Insulation."
- 3. Division 23 Section "Metal Ducts" for duct liners.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied if any).

1.3 QUALITY ASSURANCE

- A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.

1.4 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."
- B. Coordinate clearance requirements with duct Installer for duct insulation application. Before preparing ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.5 SCHEDULING

A. Schedule insulation application after pressure testing systems. Insulation application may begin on segments that have satisfactory test results.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- B. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- C. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- D. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

2.2 MINERAL-FIBER BLANKET INSULATION

- A. Description: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. CertainTeed Corp.; SoftTouch Duct Wrap.
 - b. Johns Manville; Microlite.
 - c. Knauf Insulation; Friendly Feel Duct Wrap.
 - d. Owens Corning; SOFTR All-Service Duct Wrap.

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

2.4 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

1. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

2.5 FIELD-APPLIED JACKETS

- A. Metal Jacket:
 - 1. Aluminum Jacket: Comply with ASTM B 209, Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 - a. Sheet and roll stock ready for shop or field sizing.

2.6 TAPES

A. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.

2.7 SECUREMENTS

A. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.

- B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Keep insulation materials dry during application and finishing.
- G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- H. Install insulation with least number of joints practical.
- I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
- J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- K. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.

- L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 - 4. Seal jacket to wall flashing with flashing sealant.
- C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.
 - 1. Comply with requirements in Division 07 Section "Penetration Firestopping" irestopping and fire-resistive joint sealers.
- E. Insulation Installation at Floor Penetrations:
- 1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.
- 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.5 INSTALLATION OF MINERAL-FIBER INSULATION

- A. Blanket and Board Insulation Installation on Ducts and Plenums: Secure with adhesive and tape.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - 3. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.
 - 4. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.
 - 5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
 - 6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

3.6 FIELD-APPLIED JACKET INSTALLATION

A. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel rivets 12 inches o.c. and at end joints.

3.7 DUCT INSULATION SCHEDULE, GENERAL

- A. Items Not Insulated:
 - 1. Underground fibrous-glass ducts.
 - 2. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
 - 3. Factory-insulated flexible ducts.
 - 4. Factory-insulated plenums and casings.
 - 5. Flexible connectors.
 - 6. Vibration-control devices.
 - 7. Factory-insulated access panels and doors.

3.8 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

- A. Round and flat-oval, supply-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 2 inches thick and 1.0-lb/cu. ft. nominal density.
- B. Rectangular, supply-air duct insulation without duct liner shall be the following:
 - 1. Mineral-Fiber Blanket: 2 inches thick and 1.0-lb/cu. ft. nominal density.
- C. Rectangular, outdoor-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 2 inches thick and 1.0-lb/cu. ft. nominal density.
 - 2. Mineral-Fiber Board: 2 inches thick and 4.25-lb/cu. ft. nominal density.

3.9 OUTDOOR DUCT AND PLENUM INSULATION SCHEDULE

- A. Rectangular, supply and return-air duct insulation shall be the following:
 - 1. Flexible Elastometic Sheet: 1-1/2 inches thick with aluminum, embossed jacket 0.024 inch thick, installed over insulation material.

END OF SECTION 23 07 13

SECTION 23 11 23 - FACILITY NATURAL-GAS PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Pipes, tubes, and fittings.
- 2. Piping and tubing joining materials.
- 3. Valves.
- 4. Pressure regulators.

1.2 PERFORMANCE REQUIREMENTS

- A. Minimum Operating-Pressure Ratings:
 - 1. Piping and Valves: 100 psig minimum unless otherwise indicated.
 - 2. Service Regulators: 100 psig minimum unless otherwise indicated.
- B. Natural-Gas System Pressure within Buildings: More than 0.5 psig but not more than 2 psig .
- C. Delegated Design: Design restraints and anchors for natural-gas piping and equipment, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Welding certificates.
- C. Operation and maintenance data.

1.4 QUALITY ASSURANCE

- A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

- A. Steel Pipe: ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.
 - 1. Malleable-Iron Threaded Fittings: ASME B16.3, Class 150, standard pattern.
 - 2. Unions: ASME B16.39, Class 150, malleable iron with brass-to-iron seat, ground joint, and threaded ends.

2.2 JOINING MATERIALS

A. Joint Compound and Tape: Suitable for natural gas.

2.3 MANUAL GAS SHUTOFF VALVES

- A. See "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles for where each valve type is applied in various services.
- B. General Requirements for Metallic Valves, NPS 2 and Smaller: Comply with ASME B16.33.
 - 1. CWP Rating: 125 psig.
 - 2. Threaded Ends: Comply with ASME B1.20.1.
 - 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
 - 4. Tamperproof Feature: Locking feature for valves indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.
 - 6. Service Mark: Valves 1-1/4 inches to NPS 2 shall have initials "WOG" permanently marked on valve body.
- C. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.; Apollo Div.
 - b. Perfection Corporation; a subsidiary of American Meter Company.
 - 2. Body: Bronze, complying with ASTM B 584.
 - 3. Ball: Chrome-plated bronze.
 - 4. Stem: Bronze; blowout proof.
 - 5. Seats: Reinforced TFE; blowout proof.
 - 6. Packing: Threaded-body packnut design with adjustable-stem packing.

- 7. Ends: Threaded, flared, or socket as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
- 8. CWP Rating: 600 psig.
- 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
- 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- D. Valve Boxes:
 - 1. Cast-iron, two-section box.
 - 2. Top section with cover with "GAS" lettering.
 - 3. Bottom section with base to fit over valve and barrel a minimum of 5 inches in diameter.
 - 4. Adjustable cast-iron extensions of length required for depth of bury.
 - 5. Include tee-handle, steel operating wrench with socket end fitting valve nut or flat head, and with stem of length required to operate valve.

2.4 PRESSURE REGULATORS

- A. General Requirements:
 - 1. Single stage and suitable for natural gas.
 - 2. Steel jacket and corrosion-resistant components.
 - 3. Elevation compensator.
 - 4. End Connections: Threaded for regulators NPS 2 and smaller.
- B. Line Pressure Regulators: Comply with ANSI Z21.80.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Meter Company.
 - b. Fisher Control Valves and Regulators; Division of Emerson Process Management.
 - c. Richards Industries; Jordan Valve Div.
 - 2. Body and Diaphragm Case: Cast iron or die-cast aluminum.
 - 3. Springs: Zinc-plated steel; interchangeable.
 - 4. Diaphragm Plate: Zinc-plated steel.
 - 5. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
 - 6. Orifice: Aluminum; interchangeable.
 - 7. Seal Plug: Ultraviolet-stabilized, mineral-filled nylon.
 - 8. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
 - 9. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
 - 10. Overpressure Protection Device: Factory mounted on pressure regulator.
 - 11. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.

12. Maximum Inlet Pressure: 5 psig.

2.5 LABELING AND IDENTIFYING

A. Detectable Warning Tape: Acid- and alkali-resistant, PE film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored yellow.

PART 3 - EXECUTION

3.1 OUTDOOR PIPING INSTALLATION

- A. Comply with the International Fuel Gas Code for installation and purging of natural-gas piping.
- B. Install fittings for changes in direction and branch connections.
- C. Exterior-Wall Pipe Penetrations: Seal penetrations using steel or cast-iron pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- D. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- E. Install pressure gage downstream from each service regulator. Pressure gages are specified in Division 23 Section "Meters and Gages for HVAC Piping."

3.2 INDOOR PIPING INSTALLATION

- A. Comply with the International Fuel Gas Code for installation and purging of natural-gas piping.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.
- D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

- E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- G. Locate valves for easy access.
- H. Install natural-gas piping at uniform grade of 2 percent down toward drip and sediment traps.
- I. Install piping free of sags and bends.
- J. Install fittings for changes in direction and branch connections.
- K. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping."
- L. Verify final equipment locations for roughing-in.
- M. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.
- N. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.
 - 1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.
- O. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.
- P. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.
- Q. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.
- R. Connect branch piping from top or side of horizontal piping.
- S. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment.
- T. Do not use natural-gas piping as grounding electrode.

- U. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.
- V. Install pressure gage downstream from each line regulator. Pressure gages are specified in Division 23 Section "Meters and Gages for HVAC Piping."

3.3 VALVE INSTALLATION

- A. Install manual gas shutoff valve for each gas appliance.
- B. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.

3.4 PIPING JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Threaded Joints:
 - 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 - 2. Cut threads full and clean using sharp dies.
 - 3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
 - 4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
 - 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

3.5 HANGER AND SUPPORT INSTALLATION

- A. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 1 and Smaller: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 - 2. NPS 1-1/4: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 - 3. NPS 1-1/2 and NPS 2: Maximum span, 108 inches; minimum rod size, 3/8 inch.

3.6 CONNECTIONS

- A. Connect to utility's gas main according to utility's procedures and requirements.
- B. Install natural-gas piping electrically continuous, and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.

- C. Install piping adjacent to appliances to allow service and maintenance of appliances.
- D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.
- E. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

3.7 LABELING AND IDENTIFYING

A. Comply with requirements in Division 23 Section "Identification for HVAC Piping and Equipment" for piping and valve identification.Install detectable warning tape directly above gas piping, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.8 FIELD QUALITY CONTROL

A. Test, inspect, and purge natural gas according to the International Fuel Gas Code and authorities having jurisdiction.

3.9 OUTDOOR PIPING SCHEDULE

- A. Aboveground natural-gas piping shall be the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints.

3.10 INDOOR PIPING SCHEDULE

- A. Aboveground, distribution piping shall be the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints.

3.11 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

- A. Distribution piping valves for pipe sizes NPS 2 and smaller shall be the following:
 - 1. Two-piece, full-port, bronze ball valves with bronze trim.

END OF SECTION 23 11 23

SECTION 23 23 00 - REFRIGERANT PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes refrigerant piping used for air-conditioning applications.

1.2 QUALITY ASSURANCE

- A. Comply with ASHRAE 15, "Safety Code for Refrigeration Systems."
- B. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."

1.3 PRODUCT STORAGE AND HANDLING

A. Store piping in a clean and protected area with end caps in place to ensure that piping interior and exterior are clean when installed.

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

- A. Copper Tube: ASTM B 280, Type ACR.
- B. Wrought-Copper Fittings: ASME B16.22.
- C. Wrought-Copper Unions: ASME B16.22.
- D. Brazing Filler Metals: AWS A5.8.
- E. Line Sets: Line sets are approved as an equivalent material so long as the line set is long enough to route from condensing unit to air handler coil without having to splice the line set.

2.2 REFRIGERANT PIPING INSULATION

A. All hot gas or suction refrigerant piping shall be insulated with 1/2" thick minimum flexible elastomeric insulation. If line sets are used, pre-insulated piping is approved.

2.3 VALVES AND SPECIALTIES

A. Service Valves:

REFRIGERANT PIPING

- 1. Body: Forged brass with brass cap including key end to remove core.
- 2. Core: Removable ball-type check valve with stainless-steel spring.
- 3. Seat: Polytetrafluoroethylene.
- 4. End Connections: Copper spring.
- 5. Working Pressure Rating: 500 psig.
- B. Permanent Filter Dryers: Comply with ARI 730.
 - 1. Body and Cover: Painted-steel shell.
 - 2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
 - 3. Desiccant Media: Activated alumina.
 - 4. Designed for reverse flow (for heat-pump applications).
 - 5. End Connections: Socket.
 - 6. Access Ports: NPS 1/4 connections at entering and leaving sides for pressure differential measurement.
 - 7. Maximum Pressure Loss: 2 psig.
 - 8. Working Pressure Rating: 500 psig.
 - 9. Maximum Operating Temperature: 240 deg F.
- C. Liquid Accumulators: Comply with ARI 495.
 - 1. Body: Welded steel with corrosion-resistant coating.
 - 2. End Connections: Socket or threaded.
 - 3. Working Pressure Rating: 500 psig.
 - 4. Maximum Operating Temperature: 275 deg F.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

A. Hot-Gas and Liquid Lines, and Suction Lines for Heat-Pump Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed joints.

3.2 VALVE AND SPECIALTY APPLICATIONS

- A. Install valves in suction and discharge lines of compressor.
- B. Install service valves for gage taps at strainers if they are not an integral part of strainers.
- C. Except as otherwise indicated, install valves on inlet and outlet side of filter dryers.
- D. Install a full-sized, three-valve bypass around filter dryers.
- E. Install filter dryers in liquid line between compressor and thermostatic expansion valve, and in the suction line at the compressor.

3.3 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.
- B. Install refrigerant piping according to ASHRAE 15.
- C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping adjacent to machines to allow service and maintenance.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Select system components with pressure rating equal to or greater than system operating pressure.
- J. Refer to Division 23 Sections "Instrumentation and Control for HVAC" and "Sequence of Operations for HVAC Controls" for solenoid valve controllers, control wiring, and sequence of operation.
- K. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.
- L. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Division 08 Section "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.
- M. Install refrigerant piping in protective conduit where installed belowground.
- N. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.
- O. Slope refrigerant piping as follows:
 - 1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
 - 2. Install traps and double risers to entrain oil in vertical runs.

- 3. Liquid lines may be installed level.
- P. Install pipe sleeves at penetrations in exterior walls and floor assemblies.
- Q. Seal penetrations through fire and smoke barriers according to Division 07 Section "Penetration Firestopping."
- R. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.
- S. Install sleeves through floors, walls, or ceilings, sized to permit installation of full-thickness insulation.
- T. Seal pipe penetrations through exterior walls according to Division 07 Section "Joint Sealants" for materials and methods.
- U. Identify refrigerant piping and valves according to Division 23 Section "Identification for HVAC Piping and Equipment."

3.4 PIPE JOINT CONSTRUCTION

- A. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."
 - 1. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper pipe.
 - 2. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.

3.5 HANGERS AND SUPPORTS

- A. Hanger, support, and anchor products are specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."
- B. Install the following pipe attachments:
 - 1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet long.
 - 2. Roller hangers and spring hangers for individual horizontal runs 20 feet or longer.
 - 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
 - 4. Spring hangers to support vertical runs.
 - 5. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
- C. Install hangers for copper tubing with the following maximum spacing and minimum rod sizes:
 - 1. NPS 1/2: Maximum span, 60 inches; minimum rod size, 1/4 inch.
 - 2. NPS 5/8: Maximum span, 60 inches; minimum rod size, 1/4 inch.
 - 3. NPS 1: Maximum span, 72 inches; minimum rod size, 1/4 inch.

- 4. NPS 1-1/4: Maximum span, 96 inches; minimum rod size, 3/8 inch.
- 5. NPS 1-1/2: Maximum span, 96 inches; minimum rod size, 3/8 inch.
- 6. NPS 2: Maximum span, 96 inches; minimum rod size, 3/8 inch.
- 7. NPS 2-1/2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
- 8. NPS 3: Maximum span, 10 feet; minimum rod size, 3/8 inch.
- 9. NPS 4: Maximum span, 12 feet; minimum rod size, 1/2 inch.
- D. Support multifloor vertical runs at least at each floor.

3.6 SYSTEM CHARGING

- A. Charge system using the following procedures:
 - 1. Install core in filter dryers after leak test but before evacuation.
 - 2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers. If vacuum holds for 12 hours, system is ready for charging.
 - 3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig.
 - 4. Charge system with a new filter-dryer core in charging line.

END OF SECTION 23 23 00

SECTION 23 31 13 - METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Single-wall rectangular ducts and fittings.
 - 2. Single-wall round ducts and fittings.
 - 3. Sheet metal materials.
 - 4. Duct liner.
 - 5. Sealants and gaskets.
 - 6. Hangers and supports.
- B. Related Sections:
 - 1. Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
 - 2. Division 23 Section "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.3 PERFORMANCE REQUIREMENTS

A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.

1.4 SUBMITTALS

- A. Product Data: For each type of the following products:
 - 1. Liners and adhesives.
 - 2. Sealants and gaskets.

1.5 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 1-4, "Transverse (Girth) Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 1-5, "Longitudinal Seams - Rectangular Ducts," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
- D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 2, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.2 SINGLE-WALL ROUND DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Lindab Inc.
 - b. McGill AirFlow LLC.
 - c. SEMCO Incorporated.
 - d. JTD Spiral, Inc.

- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-2, "Transverse Joints Round Duct," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-1, "Seams Round Duct and Fittings," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. All Single Wall Round and Flat Oval ducts shall be spiral formed with welded steel seams.
- D. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "90 Degree Tees and Laterals," and Figure 3-5, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.3 SHEET METAL MATERIALS

- A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G90.
- C. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 - 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
- D. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.4 DUCT LINER

A. Fibrous-Glass Duct Liner: Comply with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. CertainTeed Corporation; Insulation Group.
 - b. Johns Manville.
 - c. Knauf Insulation.
 - d. Owens Corning.
 - e. Maximum Thermal Conductivity:
 - 1) Type I, Flexible: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
- 2. Water-Based Liner Adhesive: Comply with NFPA 90A or NFPA 90B and with ASTM C 916.
- B. Insulation Pins and Washers:
 - 1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
 - 2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch thick galvanized steel; with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
- C. Shop Application of Duct Liner: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-19, "Flexible Duct Liner Installation."
 - 1. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.
 - 2. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.
 - 3. Butt transverse joints without gaps, and coat joint with adhesive between lining sections and on inner surface of liner.
 - 4. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure butted-edge overlapping.
 - 5. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and dimensions of standard liner make longitudinal joints necessary.
 - 6. Secure liner with mechanical fasteners 4 inches from corners and at intervals not exceeding 12 inches transversely; at 3 inches from transverse joints and at intervals not exceeding 18 inches longitudinally.
 - 7. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:
 - a. Fan discharges.
 - b. Intervals of lined duct preceding unlined duct.

- c. Upstream edges of transverse joints in ducts where air velocities are higher than 2500 fpm or where indicated.
- 8. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.

2.5 SEALANT AND GASKETS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- B. Water-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Solids Content: Minimum 65 percent.
 - 3. Shore A Hardness: Minimum 20.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. VOC: Maximum 75 g/L (less water).
 - 7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 - 8. Service: Indoor or outdoor.
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

2.6 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
- B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
- C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 4-1, "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct."
- D. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- E. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.
- B. Install ducts according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.
- C. Install round ducts in maximum practical lengths.
- D. Install ducts with fewest possible joints.
- E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
- F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.
- I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.
- J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.
- K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Division 23 Section "Air Duct Accessories" for fire and smoke dampers.
- L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "Duct Cleanliness for New Construction Guidelines."

3.2 DUCT SEALING

- A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- B. Seal all longitudinal seams and traverse duct joints with duct sealant. Engineer witll inspect all ducts to verify sealing has taken place.
- C. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible":
 - 1. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 2. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class B.
 - 3. Unconditioned Space, Exhaust Ducts: Seal Class C.
 - 4. Unconditioned Space, Return-Air Ducts: Seal Class B.
 - 5. Conditioned Space, Supply-Air Ducts in Pressure Classes2-Inch wg and Lower: Seal Class C.
 - 6. Conditioned Space, Exhaust Ducts: Seal Class B.
 - 7. Conditioned Space, Return-Air Ducts: Seal Class C.

3.3 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 4, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
 - 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
- C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 4-1, "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.
- D. Hangers Exposed to View: Threaded rod and angle or channel supports.
- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.

F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.4 CONNECTIONS

- A. Make connections to equipment with flexible connectors complying with Division 23 Section "Air Duct Accessories."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.5 START UP

A. Air Balance: Comply with requirements in Division 23 Section "Testing, Adjusting, and Balancing for HVAC."

3.6 DUCT SCHEDULE

- A. Supply Ducts:
 - 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units :
 - a. Pressure Class: Positive 2-inch wg.
- B. Return Ducts:
 - 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units :
 - a. Pressure Class: Positive or negative 2-inch wg.
- C. Exhaust Ducts:
 - 1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 - a. Pressure Class: Negative 2-inch wg.
- D. Outdoor-Air (Not Filtered, Heated, or Cooled) Ducts:
 - 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units :
 - a. Pressure Class: Positive or negative 2-inch wg.
- E. Intermediate Reinforcement:
 - 1. Galvanized-Steel Ducts: Galvanized steel.
- F. Liner:

METAL DUCTS

- 1. Supply Air Ducts: Fibrous glass, Type I, 1 inch thick.
- 2. Return Air Ducts: Fibrous glass, Type I, 1 inch thick.
- 3. Transfer Ducts: Fibrous glass, Type I, 1/2 inches thick.
- G. Elbow Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Elbows."
 - a. Velocity 1000 fpm or Lower:
 - 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 - 2) Mitered Type RE 4 without vanes.
 - b. Velocity 1000 to 1500 fpm:
 - 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 - 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.
 - 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."
 - 2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Elbows."
 - a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 - c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."
 - 3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-3, "Round Duct Elbows."
 - Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 - 1) Velocity 1000 fpm or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
 - 2) Velocity 1000 to 1500 fpm: 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
 - 3) Radius-to Diameter Ratio: 1.5.
 - b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 - c. Round Elbows, 14 Inches and Larger in Diameter: Welded.

H. Branch Configuration:

- 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-6, "Branch Connections."
 - a. Rectangular Main to Rectangular Branch: 45-degree entry.
 - b. Rectangular Main to Round Branch: Spin in.
- 2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards -Metal and Flexible," Figure 3-4, "90 Degree Tees and Laterals," and Figure 3-5, "Conical Tees." Saddle taps are permitted in existing duct.
 - a. Velocity 1000 fpm or Lower: 90-degree tap.
 - b. Velocity 1000 to 1500 fpm: Conical tap.

END OF SECTION 23 31 13

SECTION 23 33 00 - AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Backdraft and pressure relief dampers.
 - 2. Manual volume dampers.
 - 3. Fire dampers.
 - 4. Turning vanes.
 - 5. Duct-mounted access doors.
 - 6. Flexible connectors.
 - 7. Flexible ducts.

1.2 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Operation and maintenance data.

1.3 QUALITY ASSURANCE

- A. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," and with NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."
- B. Comply with AMCA 500-D testing for damper rating.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G60.
 - 2. Exposed-Surface Finish: Mill phosphatized.

- C. Aluminum Sheets: Comply with ASTM B 209, Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.
- D. Extruded Aluminum: Comply with ASTM B 221, Alloy 6063, Temper T6.
- E. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.
- F. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.2 BACKDRAFT AND PRESSURE RELIEF DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. American Warming and Ventilating; a division of Mestek, Inc.
 - 2. Nailor Industries Inc.
 - 3. Ruskin Company.
 - 4. SEMCO Incorporated.
- B. Description: Gravity balanced.
- C. Maximum Air Velocity: 3000 fpm .
- D. Maximum System Pressure: 2-inch wg.
- E. Frame: 0.052-inch thick, galvanized sheet steel, with welded corners and mounting flange.
- F. Blades: Multiple single-piece blades, maximum 6-inch width, 0.025-inch thick, roll-formed aluminum with sealed edges.
- G. Blade Action: Parallel.
- H. Blade Seals: Extruded vinyl, mechanically locked.
- I. Blade Axles:
 - 1. Material: Stainless steel.
 - 2. Diameter: 0.20 inch.
- J. Tie Bars and Brackets: Galvanized steel.
- K. Return Spring: Adjustable tension.
- L. Bearings: Steel ball or synthetic pivot bushings.
- M. Accessories:

1. Counterweights and spring-assist kits for vertical airflow installations.

2.3 MANUAL VOLUME DAMPERS

- A. Standard, Steel, Manual Volume Dampers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Warming and Ventilating; a division of Mestek, Inc.
 - b. Flexmaster U.S.A., Inc.
 - c. McGill AirFlow LLC.
 - d. METALAIRE, Inc.
 - e. Nailor Industries Inc.
 - f. Ruskin Company.
 - g. Vent Products Company, Inc.
 - 2. Standard leakage rating, with linkage outside airstream.
 - 3. Suitable for horizontal or vertical applications.
 - 4. Frames:
 - a. Hat-shaped, galvanized-steel channels, 0.064-inch minimum thickness.
 - b. Mitered and welded corners.
 - c. Flanges for attaching to walls and flangeless frames for installing in ducts.
 - 5. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Galvanized-steel, 0.064 inch thick.
 - 6. Blade Axles: Galvanized steel.
 - 7. Tie Bars and Brackets: Galvanized steel.
- B. Damper Hardware:
 - 1. Zinc-plated, die-cast core with dial and handle made of 3/32-inch thick zinc-plated steel, and a 3/4-inch hexagon locking nut.
 - 2. Include center holeto suit damper operating-rod size.
 - 3. Include elevated platform for insulated duct mounting.

2.4 FIRE DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 1. Nailor Industries Inc.
- 2. Prefco; Perfect Air Control, Inc.
- B. Type: Static; rated and labeled according to UL 555 by anNRTL.
- C. Fire Rating: 1-1/2 hours.
- D. Frame: Curtain type with blades outside airstream; fabricated with roll-formed, 0.034-inch thick galvanized steel; with mitered and interlocking corners.
- E. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
 - 1. Minimum Thickness: 0.052 or 0.138 inch thick, as indicated, and of length to suit application.
 - 2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.
- F. Mounting Orientation: Vertical or horizontal as indicated.
- G. Blades: Roll-formed, interlocking, 0.034-inch thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch thick, galvanized-steel blade connectors.
- H. Horizontal Dampers: Include blade lock and stainless-steel closure spring.
- I. Heat-Responsive Device: Replaceable, 165 deg F rated, fusible links.

2.5 TURNING VANES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ductmate Industries, Inc.
 - 2. METALAIRE, Inc.
 - 3. SEMCO Incorporated.
- B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
- C. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figures 2-3, "Vanes and Vane Runners," and 2-4, "Vane Support in Elbows."
- D. Vane Construction: Single wall.

2.6 DUCT-MOUNTED ACCESS DOORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 1. Cesco Products; a division of Mestek, Inc.
- 2. Nailor Industries Inc.
- B. Duct-Mounted Access Doors: Fabricate access panels according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figures 2-10, "Duct Access Doors and Panels," and 2-11, "Access Panels Round Duct."
 - 1. Door:
 - a. Double wall, rectangular.
 - b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 - c. Vision panel.
 - d. Hinges and Latches: 1-by-1-inch butt or piano hinge and cam latches.
 - e. Fabricate doors airtight and suitable for duct pressure class.
 - 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
 - 3. Number of Hinges and Locks:
 - a. Access Doors Less Than 12 Inches Square: No hinges and two sash locks.
 - b. Access Doors up to 18 Inches Square: Two hinges and two sash locks.

2.7 FLEXIBLE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ductmate Industries, Inc.
 - 2. Ventfabrics, Inc.
 - 3. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Materials: Flame-retardant or noncombustible fabrics.
- C. Coatings and Adhesives: Comply with UL 181, Class 1.
- D. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches wide attached to 2 strips of 2-3/4-inch wide, 0.028-inch thick, galvanized sheet steel or 0.032-inch thick aluminum sheets. Provide metal compatible with connected ducts.

2.8 FLEXIBLE DUCTS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Flexmaster U.S.A., Inc.
 - 2. McGill AirFlow LLC.

- B. Insulated, Flexible Duct: UL 181, Class 1, black polymer film supported by helically wound, spring-steel wire; fibrous-glass insulation; aluminized vapor-barrier film.
 - 1. Pressure Rating: 4-inch wg positive and 0.5-inch wg negative.
 - 2. Maximum Air Velocity: 4000 fpm.
 - 3. Temperature Range: Minus 20 to plus 175 deg F.
 - 4. Insulation R-Value: Comply with ASHRAE/IESNA 90.1-2004.
- C. Flexible Duct Connectors:
 - 1. Clamps: Nylon strap in sizes 3 through 18 inches, to suit duct size.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.
- B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.
- C. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.
- D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 - 1. Install steel volume dampers in steel ducts.
- E. Set dampers to fully open position before testing, adjusting, and balancing.
- F. Install test holes at fan inlets and outlets and elsewhere as indicated.
- G. Install fire dampers according to UL listing.
- H. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 - 1. At outdoor-air intakes and mixed-air plenums.
 - 2. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors; and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
- 3. Elsewhere as indicated.

- I. Install access doors with swing against duct static pressure.
- J. Access Door Sizes:
 - 1. One-Hand or Inspection Access: 8 by 5 inches.
 - 2. Two-Hand Access: 12 by 6 inches.
 - 3. Head and Hand Access: 18 by 10 inches.
- K. Label access doors according to Division 23 Section "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.
- L. Install flexible connectors to connect ducts to equipment.
- M. For fans developing static pressures of 5-inch wg and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.
- N. Connect diffusers or light troffer boots to ducts with maximum 60-inch lengths of flexible duct clamped or strapped in place.
- O. Connect flexible ducts to metal ducts with draw bands.
- P. Install duct test holes where required for testing and balancing purposes.

3.2 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Operate dampers to verify full range of movement.
 - 2. Inspect locations of access doors and verify that purpose of access door can be performed.
 - 3. Operate fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
 - 4. Inspect turning vanes for proper and secure installation.

END OF SECTION 23 33 00

SECTION 23 37 13 - DIFFUSERS, REGISTERS, AND GRILLES

PART 1 - GENERAL

1.1 SUMMARY

- A. Related Sections:
 - 1. Division 08 Section "Louvers and Vents" for fixed and adjustable louvers and wall vents, whether or not they are connected to ducts.
 - 2. Division 23 Section "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers, registers, and grilles.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated, include the following:
 - 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 - 2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. Anemostat Products; a Mestek company.
 - 2. Nailor Industries Inc.
 - 3. Price Industries.
 - 4. Titus.
 - 5. Tuttle & Bailey.

2.2 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install diffusers, registers, and grilles level and plumb.
- B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.
- C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.2 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 23 37 13

SECTION 23 55 30 - SPLIT-SYSTEM HEAT PUMP UNITS

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Electric furnaces and accessories complete with controls.
 - 2. Refrigeration components.

1.2 SUBMITTALS

- A. Product Data: Include rated capacities, operating characteristics, furnished specialties, and accessories for each of the following:
 - 1. Furnace.
 - 2. Thermostat.
 - 3. Refrigeration components.
- B. Operation and maintenance data.

1.3 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. ASHRAE/IESNA 90.1-2004 Compliance: Applicable requirements in ASHRAE/IESNA 90.1-2004, Section 6 "Heating, Ventilating, and Air-Conditioning."
- C. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 ELECTRIC FURNACES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Bryant Heating & Cooling Systems; Div. of United Technologies Corp.
 - 2. Carrier Corporation; Div. of United Technologies Corp.
 - 3. York International Corp.; a division of Unitary Products Group.

- 4. Trane.
- B. General Requirements for Electric Furnaces: Factory assembled, piped, wired, and tested.
- C. Cabinet: Steel, with duct liner downstream from cooling coil.
 - 1. Duct Liner: Fiberglass, minimum 1/2 inch thick, complying with ASTM C 1071 and having a coated surface exposed to airstream complying with NFPA 90A or NFPA 90B and with NAIMA's "Fibrous Glass Duct Liner Standard."
 - 2. Factory paint external cabinets in manufacturer's standard color.
- D. Fan: Centrifugal, factory balanced, resilient mounted, direct drive.
 - 1. Fan Motors: Comply with requirements in Division 15 Section "Motors."
 - 2. Special Motor Features: Single speed, Premium (TM) efficiency, as defined in Division 15 Section "Motors," and with internal thermal protection and permanent lubrication.
- E. Electric-Resistant Heating Elements: Helix-wound, nickel-chromium wire-heating elements in ceramic insulators mounted on steel supports.
- F. Heating-Element Control: Sequencer relay with relay for each element; switches elements on and off, with delay between each increment; initiates, stops, or changes fan speed.

2.2 THERMOSTATS

- A. Solid-State Thermostat: Wall-mounting, programmable, microprocessor-based unit with automatic switching from heating to cooling, preferential rate control, seven-day programmability with minimum of four temperature presets per day, and battery backup protection against power failure for program settings.
- B. Control Wiring: Unshielded twisted-pair cabling.
 - 1. No. 24 AWG, 100 ohm, four pair.
- C. Controls shall comply with requirements in ASHRAE/IESNA 90.1-2004, "Controls."

2.3 REFRIGERATION COMPONENTS

- A. General Refrigeration Component Requirements:
 - 1. Energy Efficiency: Equal to or greater than prescribed by ASHRAE/IESNA 90.1-2004, "Energy Standard for Buildings except Low-Rise Residential Buildings."
- B. Refrigerant Coil: Copper tubes mechanically expanded into aluminum fins. Comply with ARI 210/240, "Unitary Air-Conditioning and Air-Source Heat Pump Equipment." Match size with furnace. Include condensate drain pan with accessible drain outlet.

- 1. Refrigerant Coil Enclosure: Steel, matching furnace and evaporator coil, with access panel and flanges for integral mounting at or on furnace cabinet and galvanized sheet metal drain pan coated with black asphaltic base paint.
- C. Refrigerant Piping: Comply with requirements in Division 15 Section "Refrigerant Piping."
- D. Air-Cooled, Compressor-Condenser Unit:
 - 1. Casing: Steel, finished with baked enamel, with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Provide brass service valves, fittings, and gage ports on exterior of casing.
 - 2. Compressor: Hermetically sealed scroll type.
 - a. Crankcase heater.
 - b. Vibration isolation mounts for compressor.
 - c. Compressor motor shall have thermal- and current-sensitive overload devices, start capacitor, relay, and contactor.
 - d. Two-speed compressor motors shall have manual-reset high-pressure switch and automatic-reset low-pressure switch.
 - e. Refrigerant Charge: R-410A.
 - 3. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins, complying with ARI 210/240, and with liquid subcooler.
 - 4. Heat-Pump Components: Reversing valve and low-temperature air cut-off thermostat.
 - 5. Fan: Aluminum-propeller type, directly connected to motor.
 - 6. Motor: Permanently lubricated, with integral thermal-overload protection.
 - 7. Low Ambient Kit: Permits operation down to 45 deg F.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Suspended Units: Suspend from structure using threaded rods, spring hangers, and building attachments. Secure rods to unit hanger attachments. Adjust hangers so unit is level and plumb.
- B. Base-Mounted Units: Secure units to substrate. Provide optional bottom closure base if required by installation conditions.
- C. Controls: Install thermostats at mounting height of 60 inches above floor.
- D. Wiring Method: Install control wiring in accessible ceiling spaces and in gypsum board partitions where unenclosed wiring method may be used. Conceal control wiring except in unfinished spaces.
E. Install roof-mounted, compressor-condenser components on equipment supports specified in Division 7 Section "Roof Accessories." Anchor units to supports with removable, cadmium-plated fasteners.

3.2 CONNECTIONS

- A. Install piping adjacent to equipment to allow service and maintenance.
- B. Connect ducts to furnace with flexible connector. Comply with requirements in Division 15 Section "Duct Accessories."
- C. Comply with requirements in Division 15 Section "Refrigerant Piping" for installation and joint construction of refrigerant piping.
- D. Complete installation and startup checks and start units according to manufacturer's written instructions.
- E. Verify proper operation of capacity control device.
- F. Adjust airflow and initial temperature and humidity set points.
- G. After completing installation, clean furnaces internally according to manufacturer's written instructions.

END OF SECTION 23 55 30

SECTION 23 82 39 - UNIT HEATERS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Cabinet unit heaters with centrifugal fans and electric-resistance heating coils.
 - 2. Propeller unit heaters with electric-resistance heating coils.

1.2 SUBMITTALS

- A. Product Data: Include rated capacities, operating characteristics, furnished specialties, and accessories for each product indicated.
- B. Operation and maintenance data.

1.3 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

PART 2 - PRODUCTS

2.1 CABINET UNIT HEATERS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - 1. Berko Electric Heating; a division of Marley Engineered Products.
 - 2. Carrier Corporation.
 - 3. QMark Electric Heating; a division of Marley Engineered Products.
- B. Description: A factory-assembled and -tested unit complying with ARI 440.
 - 1. Comply with UL 2021.
- C. Cabinet: Steel with baked-enamel finish with manufacturer's standard paint, in color selected by Architect.
 - 1. Vertical Unit, Exposed Front Panels: Minimum 0.0528-inch thick, sheet steel, removable panels with channel-formed edges secured with tamperproof cam fasteners.

- 2. Recessing Flanges: Steel, finished to match cabinet.
- 3. Control Access Door: Key operated.
- 4. Base: Minimum 0.0528-inch thick steel, finished to match cabinet, 4 inches high with leveling bolts.
- D. Filters: Minimum arrestance according to ASHRAE 52.1 and a minimum efficiency reporting value (MERV) according to ASHRAE 52.2.
 - 1. Pleated: 90 percent arrestance and 7 MERV.
- E. Electric-Resistance Heating Coil: Nickel-chromium heating wire, free from expansion noise and hum, mounted in ceramic inserts in a galvanized-steel housing; with fuses in terminal box for overcurrent protection and limit controls for high-temperature protection. Terminate elements in stainless-steel machine-staked terminals secured with stainless-steel hardware.
- F. Fan and Motor Board: Removable.
 - 1. Fan: Forward curved, double width, centrifugal; directly connected to motor. Thermoplastic or painted-steel wheels, and aluminum, painted-steel, or galvanized-steel fan scrolls.
 - 2. Motor: Permanently lubricated, multispeed; resiliently mounted on motor board. Comply with requirements in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 - 3. Wiring Terminations: Connect motor to chassis wiring with plug connection.
- G. Basic Unit Controls:
 - 1. Control voltage transformer.
 - 2. Wall-mounting thermostat with the following features.
 - a. Heat-off switch.
 - b. Fan on-auto switch.
 - c. Manual fan speed switch.
 - d. Adjustable deadband.
 - e. Exposed set point.
 - f. Exposed indication.
 - g. Deg F indication.
- H. Electrical Connection: Factory wire motors and controls for a single field connection.

2.2 PROPELLER UNIT HEATERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Berko
- B. Description: An assembly including casing, coil, fan, and motor in horizontal discharge configuration with adjustable discharge louvers.

- C. Comply with UL 2021.
- D. Cabinet: Removable panels for maintenance access to controls.
- E. Cabinet Finish: Manufacturer's standard baked enamel applied to factory-assembled and -tested propeller unit heater before shipping.
- F. Discharge Louver: Adjustable fin diffuser for horizontal units and conical diffuser for vertical units.
- G. Electric-Resistance Heating Elements: Nickel-chromium heating wire, free from expansion noise and 60-Hz hum, embedded in magnesium oxide refractory and sealed in steel or corrosion-resistant metallic sheath with fins no closer than 0.16 inch. Element ends shall be enclosed in terminal box. Fin surface temperature shall not exceed 550 deg F at any point during normal operation.
 - 1. Circuit Protection: One-time fuses in terminal box for overcurrent protection and limit controls for high-temperature protection of heaters.
 - 2. Wiring Terminations: Stainless-steel or corrosion-resistant material.
- H. Fan: Propeller type with aluminum wheel directly mounted on motor shaft in the fan venturi.
- I. Fan Motors: Comply with requirements in"" Division 23 Section "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Type: Permanently lubricated.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install unit heaters to comply with NFPA 90A.
- B. Suspend propeller unit heaters from structure with all-thread hanger rods and elastomeric hangers.
- C. Install wall-mounting thermostats and switch controls in electrical outlet boxes at heights to match lighting controls. Verify location of thermostats and other exposed control sensors with Drawings and room details before installation.
- D. Install new filters in each fan-coil unit within two weeks of Substantial Completion.
- E. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- F. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

END OF SECTION 23 82 39

SECTION 26 05 19 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Copper building wire rated 600 V or less.
 - 2. Metal-clad cable, Type MC, rated 600 V or less.
 - 3. Connectors, splices, and terminations rated 600 V and less.

PART 2 - PRODUCTS

2.1 COPPER BUILDING WIRE

- A. Description: Flexible, insulated and uninsulated, drawn copper current-carrying conductor with an overall insulation layer or jacket, or both, rated 600 V or less.
- B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Alpha Wire Company.
 - 2. Cerro Wire LLC.
 - 3. General Cable Technologies Corporation.
 - 4. Southwire Company.
- C. Standards:
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
 - 2. RoHS compliant.
 - 3. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."
- D. Conductor Insulation:
 - 1. Type THHN and Type THWN-2: Comply with UL 83.
 - 2. Type XHHW-2: Comply with UL 44.

2.2 METAL-CLAD CABLE, TYPE MC

- A. Description: A factory assembly of one or more current-carrying insulated conductors in an overall metallic sheath.
- B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Alpha Wire Company.
 - 2. General Cable Technologies Corporation.
 - 3. Southwire Company.
- C. Standards:
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
 - 2. Comply with UL 1569.
 - 3. RoHS compliant.
 - 4. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."
- D. Circuits:
 - 1. Single circuit.
- E. Conductors: Copper, complying with ASTM BASTM B 3 for bare annealed copper and with ASTM B 8 for stranded conductors.
- F. Ground Conductor: Insulated.
- G. Conductor Insulation:
 - 1. Type TFN/THHN/THWN-2: Comply with UL 83.
 - 2. Type XHHW-2: Comply with UL 44.
- H. Armor: Steel, interlocked.

2.3 CONNECTORS AND SPLICES

- A. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated; listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- B. Connectors
- C. Mechanical set screw or compression type lugs for termination or connection to equipment.

- D. Splices and Taps
- E. Insulated spring wire connectors with thermoplastic flame retardant shell and square spiral spring for conductor sizes #8 and smaller
- F. Pre-insulated with mechanical set screw type connectors for wire #6 awg and larger Blackburn AMT series or equal.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

- A. Feeders: Copper; solid or stranded for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
- B. Branch Circuits: Copper. Solid or stranded for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
- 3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS
 - A. Service Entrance: Type THHN/THWN-2, single conductors in raceway Type XHHW-2, single conductors in raceway.
 - B. Exposed Feeders: Type THHN/THWN-2, single conductors in raceway Type XHHW-2, single conductors in raceway.
 - C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Type THHN/THWN-2, single conductors in raceway.
 - D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway Type XHHW-2, single conductors in raceway.
 - E. Exposed Branch Circuits, Including in Crawlspaces: Type THHN/THWN-2, single conductors in raceway.
 - F. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN/THWN-2, single conductors in raceway Metal-clad cable, Type MC.
 - G. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway Type XHHW-2, single conductors in raceway.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

- A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.
- B. Complete raceway installation between conductor and cable termination points according to Section 26 05 33 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.
- C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.
- E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.
- F. Support cables according to Section 26 05 29 "Hangers and Supports for Electrical Systems."

3.4 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
- B. Make splices, terminations, and taps that are compatible with conductor material.
- C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches f slack. Provide pigtail connection to outlet to allow removal of device without disturbing downstream devices.

3.5 IDENTIFICATION

- A. Identify and color-code conductors and cables according to Section 26 05 53 "Identification for Electrical Systems."
- B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.

3.6 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

- A. Install sleeves and sleeve seals at penetrations of exterior wall assemblies below grade.
- B. FIRESTOPPING

C. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section 07 84 13 "Penetration Firestopping."

END OF SECTION 26 05 19

SECTION 26 05 26 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes grounding and bonding systems and equipment.
- B. Section includes grounding and bonding systems and equipment, plus the following special applications:
 - 1. Underground distribution grounding.
 - 2. Ground bonding common with lightning protection system.
 - 3. Foundation steel electrodes.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with UL 467 for grounding and bonding materials and equipment.

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Underground Grounding Conductors: Install bare copper conductor, No. 2/0 AWG minimum.
 - 1. Bury at least 24 inches below grade.
- B. Conductor Terminations and Connections:
 - 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 - 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 - 3. Connections to Ground Rods at Test Wells: Bolted connectors.
 - 4. Connections to Structural Steel: Welded connectors.

3.2 GROUNDING AT THE SERVICE

A. Equipment grounding conductors and grounding electrode conductors shall be connected to the ground bus. Install a main bonding jumper between the neutral and ground buses.

3.3 GROUNDING SEPARATELY DERIVED SYSTEMS

A. Generator: Install grounding electrode(s) at the generator location. The electrode shall be connected to the equipment grounding conductor and to the frame of the generator.

3.4 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS

- A. Comply with IEEE C2 grounding requirements.
- B. Grounding Manholes and Handholes: Install a driven ground rod through manhole or handhole floor, close to wall, and set rod depth so 4 inches will extend above finished floor. If necessary, install ground rod before manhole is placed and provide No. 1/0 AWG bare, tinned-copper conductor from ground rod into manhole through a waterproof sleeve in manhole wall. Protect ground rods passing through concrete floor with a double wrapping of pressure-sensitive insulating tape or heat-shrunk insulating sleeve from 2 inches above to 6 inches below concrete. Seal floor opening with waterproof, nonshrink grout.
- C. Grounding Connections to Manhole Components: Bond exposed-metal parts such as inserts, cable racks, pulling irons, ladders, and cable shields within each manhole or handhole, to ground rod or grounding conductor. Make connections with No. 4 AWG minimum, stranded, hard-drawn copper bonding conductor. Train conductors level or plumb around corners and fasten to manhole walls. Connect to cable armor and cable shields according to written instructions by manufacturer of splicing and termination kits.
- D. Pad-Mounted Transformers and Switches: Install two ground rods and ground ring around the pad. Ground pad-mounted equipment and noncurrent-carrying metal items associated with substations by connecting them to underground cable and grounding electrodes. Install tinned-copper conductor not less than No. 2 AWG for ground ring and for taps to equipment grounding terminals. Bury ground ring not less than 6 inches from the foundation.

3.5 EQUIPMENT GROUNDING

- A. Install insulated equipment grounding conductors with all feeders and branch circuits.
- B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:
 - 1. Feeders and branch circuits.
 - 2. Lighting circuits.
 - 3. Receptacle circuits.

- 4. Single-phase motor and appliance branch circuits.
- 5. Three-phase motor and appliance branch circuits.
- 6. Flexible raceway runs.
- 7. Armored and metal-clad cable runs.
- 8. Busway Supply Circuits: Install insulated equipment grounding conductor from grounding bus in the switchgear, switchboard, or distribution panel to equipment grounding bar terminal on busway.
- 9. X-Ray Equipment Circuits: Install insulated equipment grounding conductor in circuits supplying x-ray equipment.
- C. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.
- D. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.
- E. Poles Supporting Outdoor Lighting Fixtures: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors.

3.6 INSTALLATION

- A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
- B. Ground Bonding Common with Lightning Protection System: Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system. Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor, and install in conduit.
- C. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.
 - 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 - 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
 - 3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.
- D. Grounding and Bonding for Piping:

- 1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
- 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
- 3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

3.7 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 - 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
 - 3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, and at individual ground rods. Make tests at ground rods before any conductors are connected.
 - a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 - b. Perform tests by fall-of-potential method according to IEEE 81.
 - 4. Prepare dimensioned Drawings locating each test well, ground rod and ground-rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.
- C. Grounding system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.
- E. Report measured ground resistances that exceed the following values:
 - 1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.
 - 2. Power and Lighting Equipment or System with Capacity of 500 to 1000 kVA: 5 ohms.

- 3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.
- 4. Power Distribution Units or Panelboards Serving Electronic Equipment: 3 ohm(s).
- 5. Substations and Pad-Mounted Equipment: 5 ohms.
- 6. Manhole Grounds: 10 ohms.
- F. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION 26 05 26

SECTION 26 05 29 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Steel slotted support systems.
 - 2. Conduit and cable support devices.
 - 3. Mounting, anchoring, and attachment components, including powder-actuated fasteners, mechanical expansion anchors, concrete inserts, clamps, through bolts, toggle bolts, and hanger rods.
 - 4. Fabricated metal equipment support assemblies.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

- A. Steel Slotted Support Systems: Preformed steel channels and angles with minimum 13/32-inchdiameter holes at a maximum of 8 inches o.c. in at least one surface.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Allied Tube & Conduit; a part of Atkore International.
 - b. B-line, an Eaton business.
 - c. ERICO International Corporation.
 - d. GS Metals Corp.
 - e. Thomas & Betts Corporation; A Member of the ABB Group.
 - f. Unistrut; Part of Atkore International.
 - 2. Standard: Comply with MFMA-4 factory-fabricated components for field assembly.
 - 3. Material for Channel, Fittings, and Accessories: Painted Galvanized steel for interior locations. Stainless steel, Type 304, for exterior or damp/wet locations..
 - 4. Channel Width: Selected for applicable load criteria .
 - 5. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.

- 6. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
- B. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
- C. Structural Steel for Fabricated Supports and Restraints: ASTM A36/A 36M steel plates, shapes, and bars; black and galvanized.
- D. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 - 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) Hilti, Inc.
 - 2) ITW Ramset/Red Head; Illinois Tool Works, Inc.
 - 2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) B-line, an Eaton business.
 - 2) Hilti, Inc.
 - 3) ITW Ramset/Red Head; Illinois Tool Works, Inc.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

- A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.
- B. Materials: Comply with requirements in Section 05 50 00 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with the following standards for application and installation requirements of hangers and supports, except where requirements on Drawings or in this Section are stricter:
 - 1. NECA 1.
 - 2. NECA 101
 - 3. NECA 102.
 - 4. NECA 105.
 - 5. NECA 111.
- B. Comply with requirements in Section 07 84 13 "Penetration Firestopping" for firestopping materials and installation for penetrations through fire-rated walls, ceilings, and assemblies.
- C. Comply with requirements for raceways and boxes specified in Section 26 05 33 "Raceways and Boxes for Electrical Systems."
- D. Maximum Support Spacing and Minimum Hanger Rod Size for Raceways: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch in diameter.
- E. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 - 1. Secure raceways and cables to these supports with single-bolt conduit clamps using spring friction action for retention in support channel.
 - 2. Single Raceways or Cables
 - 3. For wall mounted raceway, use single through-bolt conduit hanger/clamp, or two-hole strap type hanger. Fasten hangers to structural members, or studs using appropriate fastener. Do not support directly from drywall.
 - 4. For ceiling mounted runs, use single through-bolt conduit hanger, attached to separate or integral beam clamp, or attached to threaded rod where suspended from structure. Clevis type hangers may also be used for single conduit runs suspended from threaded rod.
 - 5. For conduits routed within metal studs, use single through-bolt conduit hanger with integral plate/flange for fastening to stud.
 - 6. All supports shall be mechanically fastened to support surfaces. Do not use supports that rely solely on friction for supporting conduits, or for attaching to metal studs or hanger wires.

3.2 SUPPORT INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.
- B. Raceway Support Methods: In addition to methods described in NECA1, EMT may be supported by openings through structure members, according to NFPA 70.
- C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.
- D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 - 1. To Wood: Fasten with lag screws or through bolts.
 - 2. To New Concrete: Bolt to concrete inserts.
 - 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 - 4. To Existing Concrete: Expansion anchor fasteners.
 - 5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
 - 6. To Steel: Welded threaded studs complying with AWS D1.1/D1.1M, with lock washers and nuts Beam clamps (MSS SP-58,Type 19, 21, 23, 25, or 27), complying with MSS SP-69.
 - 7. To Light Steel: Sheet metal screws.
 - 8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that comply with seismic-restraint strength and anchorage requirements.
- E. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

- A. Comply with installation requirements in Section 05 50 00 "Metal Fabrications" for site-fabricated metal supports.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

C. Field Welding: Comply with AWS D1.1/D1.1M.

END OF SECTION 26 05 29

SECTION 26 05 33 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Metal conduits, tubing, and fittings.
 - 2. Nonmetallic conduits, tubing, and fittings.
 - 3. Metal wireways and auxiliary gutters.
 - 4. Surface raceways.
 - 5. Boxes, enclosures, and cabinets.
 - 6. Handholes and boxes for exterior underground cabling.

PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Allied Tube & Conduit; a part of Atkore International.
 - 2. O-Z/Gedney; a brand of Emerson Industrial Automation.
 - 3. Southwire Company.
 - 4. Thomas & Betts Corporation; A Member of the ABB Group.
 - 5. Wheatland Tube Company.
- B. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. GRC: Comply with ANSI C80.1 and UL 6.
- D. ARC: Comply with ANSI C80.5 and UL 6A.
- E. IMC: Comply with ANSI C80.6 and UL 1242.
- F. EMT: Comply with ANSI C80.3 and UL 797.
- G. FMC: Comply with UL 1; zinc-coated steel.
- H. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.
- I. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.

- 1. Fittings for EMT:
 - a. Material: Steel.
 - b. Type: Setscrew compression.

2.2 NONMETALLIC CONDUITS AND FITTINGS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. AFC Cable Systems; a part of Atkore International.
 - 2. Lamson & Sessions.
 - 3. RACO; Hubbell.
- B. Listing and Labeling: Nonmetallic conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. ENT: Comply with NEMA TC13 and UL 1653
- D. RNC: Type EPC-40-PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.
- E. Fittings for ENT and RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.
- F. Fittings for LFNC: Comply with UL 514B.
- G. Solvents and Adhesives: As recommended by conduit manufacturer.

2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. B-line, an Eaton business.
 - 2. Hoffman; a brand of Pentair Equipment Protection.
 - 3. MonoSystems, Inc.
 - 4. Square D.
- B. Description: Sheet metal, complying with UL 870 and NEMA 250, unless otherwise indicated, and sized according to NFPA 70.
 - 1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.4 BOXES, ENCLOSURES, AND CABINETS

- A. Manufacturers: Subject to compliance with requirements, [provide products by the following] [provide products by one of the following] [available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following]:
 - 1. Crouse-Hinds, an Eaton business.
 - 2. EGS/Appleton Electric.
 - 3. Hubbell Incorporated.
 - 4. RACO; Hubbell.
 - 5. Thomas & Betts Corporation; A Member of the ABB Group.
 - 6. Wiremold / Legrand.
- B. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.
- C. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.
- D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, aluminum, Type FD, with gasketed cover.
- E. Nonmetallic Outlet and Device Boxes: Comply with NEMA OS 2 and UL 514C.
- F. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb. Outlet boxes designed for attachment of luminaires weighing more than 50 lb shall be listed and marked for the maximum allowable weight.
- G. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- H. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, cast aluminum with gasketed cover.
- I. Box extensions used to accommodate new building finishes shall be of same material as recessed box.
- J. Device Box Dimensions: 4 inches square by 2-1/8 inches deep.
- K. Gangable boxes are prohibited.

2.5 HANDHOLES AND BOXES FOR EXTERIOR UNDERGROUND WIRING

- A. General Requirements for Handholes and Boxes:
 - 1. Boxes and handholes for use in underground systems shall be designed and identified as defined in NFPA 70, for intended location and application.
 - 2. Boxes installed in wet areas shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

- B. Polymer-Concrete Handholes and Boxes with Polymer-Concrete Cover: Molded of sand and aggregate, bound together with polymer resin, and reinforced with steel, fiberglass, or a combination of the two.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Quazite: Hubbell Power Systems, Inc.
 - 2. Standard: Comply with SCTE 77.
 - 3. Configuration: Designed for flush burial with open bottom unless otherwise indicated.
 - 4. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure and handhole location.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

- A. Outdoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed Conduit: GRC IMC .
 - 2. Concealed Conduit, Aboveground: GRC IMC EMT .
 - 3. Underground Conduit: RNC, Type EPC-40-PVC, direct buried. Use Schedule 80 PVC for all elbows
 - 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
 - 5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R or Type 4x.
- B. Indoors: Apply raceway products as specified below unless otherwise indicated.
 - 1. Exposed, Not Subject to Physical Damage: EMT GRC, or IMC.
 - 2. Exposed and Subject to Physical Damage: GRC IMC. Raceway locations include the following:
 - a. Loading dock.
 - b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 - c.
 - 3. Concealed in Ceilings and Interior Walls and Partitions: EMT.
 - 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
 - 5. Damp or Wet Locations: GRC IMC.
 - 6. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in institutional and commercial kitchens and damp or wet locations.

- C. Minimum Raceway Size: 3/4-inch trade size.
- D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 - 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 - 2. EMT: Use setscrew or compression, steel fittings. Comply with NEMA FB 2.10.
 - 3. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.
- E. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.
- F. Install surface raceways only where indicated on Drawings.
- G. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F.

3.2 INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.
- B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.
- C. Comply with requirements in Section 26 05 29 "Hangers and Supports for Electrical Systems" for hangers and supports.
- D. Arrange stub-ups so curved portions of bends are not visible above finished slab.
- E. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.
- F. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.
- G. Support conduit within 12 inchesof enclosures to which attached.
- H. Raceways Embedded in Slabs:
 - 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure raceways to reinforcement at maximum 10-foot intervals.
 - 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 - 3. Arrange raceways to keep a minimum of of concrete cover in all directions.

- 4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.
- 5. Change from ENT to GRC IMC before rising above floor.
- I. Stub-ups to Above Recessed Ceilings:
 - 1. Use EMT, IMC, or RMC for raceways.
 - 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.
- J. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.
- K. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.
- L. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.
- M. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.
- N. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.
- O. Surface Raceways:
 - 1. Install surface raceway with a minimum 2-inchradius control at bend points.
 - 2. Secure surface raceway with screws or other anchor-type devices at intervals not exceeding 48 inches and with no less than two supports per straight raceway section. Support surface raceway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.
- P. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces.
- Q. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:
 - 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 - 2. Where an underground service raceway enters a building or structure.
 - 3. Where otherwise required by NFPA 70.

- R. Expansion-Joint Fittings:
 - 1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F and that has straight-run length that exceeds 25 feet.
 - 2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 - a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.
 - b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.
 - c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.
 - d. Attics: 135 deg F temperature change.
 - 3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per degree F of temperature change for PVC conduits.
 - 4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
 - 5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.
- S. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches of flexible conduit for recessed and semirecessed luminaires, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 - 1. Use LFMC in damp or wet locations subject to severe physical damage.
 - 2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.
- T. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to bottom of box unless otherwise indicated.
- U. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between the box and cover plate or the supported equipment and box.
- V. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.
- W. Locate boxes so that cover or plate will not span different building finishes.
- X. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.
- Y. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.
- Z. Set metal floor boxes level and flush with finished floor surface.

AA. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

3.3 INSTALLATION OF UNDERGROUND CONDUIT

- A. Direct-Buried Conduit:
 - 1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Section 31 20 00 "Earth Moving" for pipe less than 6 inches in nominal diameter.
 - 2. Install backfill as specified in Section 31 20 00 "Earth Moving."
 - 3. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Section 31 20 00 "Earth Moving."
 - 4. Install manufactured duct elbows for stub-up at poles and equipment and at building entrances through floor unless otherwise indicated. Encase elbows for stub-up ducts throughout length of elbow.
 - 5. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through floor.
 - a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete for a minimum of 12 inches on each side of the coupling.
 - b. For stub-ups at equipment mounted on outdoor concrete bases and where conduits penetrate building foundations, extend steel conduit horizontally a minimum of 60 inches from edge of foundation or equipment base. Install insulated grounding bushings on terminations at equipment.
 - 6. Underground Warning Tape: Comply with requirements in Section 26 05 53 "Identification for Electrical Systems."

3.4 INSTALLATION OF UNDERGROUND HANDHOLES AND BOXES

- A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances.
- B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.
- C. Elevation: In paved areas, set so cover surface will be flush with finished grade. Set covers of other enclosures 1 inch above finished grade.
- D. Install handholes with bottom below frost line, below grade.

E. Field-cut openings for conduits according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

3.5 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 26 05 44 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.6 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 07 84 13 "Penetration Firestopping."

END OF SECTION 26 05 33

SECTION 26 05 44 - SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

PART 1 - GENERAL

1.1 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 ROUND SLEEVES

- A. Steel Wall Sleeves:
 - 1. General Characteristics: ASTM A53/A53M, Type E, Grade B, Schedule 40, zinc coated, plain ends and integral waterstop.
- B. PVC Pipe Sleeves:
 - 1. General Characteristics: ASTM D1785, Schedule 40.
- C. Round, Galvanized-Steel, Sheet Metal Sleeves:
 - 1. General Characteristics: Galvanized-steel sheet; thickness not less than 0.0239 inch; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.

2.2 RECTANGULAR SLEEVES

- A. Rectangular, Galvanized-Steel, Sheet Metal Sleeves:
 - 1. General Characteristics:
 - a. Material: Galvanized sheet steel.
 - b. Minimum Metal Thickness:
 - 1) For sleeve cross-section rectangle perimeter less than 50 inch and with no side larger than 16 inch, thickness must be 0.052 inch.

2.3 SLEEVE-SEAL SYSTEMS

- A. General Characteristics: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable or between raceway and cable.
- B. Options:
 - 1. Sealing Elements: [EPDM] [Nitrile (Buna N)] rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Connecting Bolts and Nuts: [Carbon steel, with corrosion-resistant coating,] [Stainless steel] of length required to secure pressure plates to sealing elements.

2.4 SLEEVE-SEAL FITTINGS

A. General Characteristics: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit must have plastic or rubber waterstop collar with center opening to match piping OD.

2.5 GROUT

- A. General Characteristics: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.
 - 1. Standard: ASTM C1107/C1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
 - 2. Design Mix: 5000 psi, 28-day compressive strength.

2.6 POURABLE SEALANTS

- A. Performance Criteria:
 - 1. General Characteristics: Single-component, neutral-curing elastomeric sealants of grade indicated below.
 - a. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.

2.7 FOAM SEALANTS

A. Performance Criteria:

1. General Characteristics: Multicomponent, liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam. Foam expansion must not damage cables or crack penetrated structure.

PART 3 - EXECUTION

3.1 INSTALLATION OF SLEEVES FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

- A. Sleeves for Conduits Penetrating Above-Grade, Non-Fire-Rated, Concrete and Masonry-Unit Floors and Walls:
 - 1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 - a. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall or floor so no voids remain. Tool exposed surfaces smooth; protect material while curing.
 - b. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 07 92 00 "Joint Sealants."
 - 2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
 - 3. Size pipe sleeves to provide 1/4 inch annular clear space between sleeve and raceway or cable, unless sleeve-seal system is to be installed or seismic criteria require different clearance.
 - 4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.
 - 5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inch above finished floor level. Install sleeves during erection of floors.
- B. Sleeves for Conduits Penetrating Non-Fire-Rated Wall Assemblies:
 - 1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
 - 2. Seal space outside of sleeves with approved joint compound for wall assemblies.
- C. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.
- D. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve-seal systems. Size sleeves to allow for 1 inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- E. Underground, Exterior-Wall and Floor Penetrations:

- 1. Install steel pipe sleeves with integral waterstops. Size sleeves to allow for 1 inch annular clear space between raceway or cable and sleeve for installing sleeve-seal system. Install sleeve during construction of floor or wall.
- 2. Install steel pipe sleeves. Size sleeves to allow for 1 inch annular clear space between raceway or cable and sleeve for installing sleeve-seal system. Grout sleeve into wall or floor opening.

3.2 INSTALLATION OF RECTANGULAR SLEEVES AND SLEEVE SEALS

- A. Install sleeves in existing walls without compromising structural integrity of walls. Do not cut structural elements without reinforcing the wall to maintain the designed weight bearing and wall stiffness.
- B. Install conduits and cable with no crossings within the sleeve.
- C. Fill opening around conduits and cables with expanding foam without leaving voids.
- D. Provide metal sheet covering at both wall surfaces and finish to match surrounding surfaces. Metal sheet must be same material as sleeve.

3.3 INSTALLATION OF SLEEVE-SEAL SYSTEMS

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.
- B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

END OF SECTION 26 05 44

SECTION 26 05 53 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 ACTION SUBMITTALS

- A. Product Data:
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for electrical identification products.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Comply with ASME A13.1 and IEEE C2.
- B. Comply with 29 CFR 1910.144 for color identification of hazards; 29 CFR 1910.145 for danger, caution, warning, and safety instruction signs and tags; and the following:
 - 1. Fire-protection and fire-alarm equipment, including raceways, must be finished, painted, or suitably marked safety red.
 - 2. Ceiling-mounted hangers, supports, cable trays, and raceways must be finished, painted, or suitably marked safety yellow where less than 7.7 ft above finished floor.
- C. Signs, labels, and tags required for personnel safety must comply with the following standards:
 - 1. Safety Colors: NEMA Z535.1.
 - 2. Facility Safety Signs: NEMA Z535.2.
 - 3. Safety Symbols: NEMA Z535.3.
 - 4. Product Safety Signs and Labels: NEMA Z535.4.
 - 5. Safety Tags and Barricade Tapes for Temporary Hazards: NEMA Z535.5.
- D. Comply with NFPA 70E requirements for arc-flash warning labels.
- E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, must comply with UL 969.
- F. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 - 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.2 COLOR AND LEGEND REQUIREMENTS

- A. Color-Coding for Phase- and Voltage-Level Identification, 1000 V or Less: Use colors listed below for ungrounded servicefeederandbranch-circuit conductors.
 - 1. Color must be factory applied or field applied for sizes larger than 8 AWG if authorities having jurisdiction permit.
 - 2. Colors for 208Y/120 V Circuits:
 - a. Phase A: Black.
 - b. Phase B: Red.
 - c. Phase C: Blue.
 - 3. Color for Neutral: White.
 - 4. Color for Equipment Grounds: GreenorGreen with yellow stripe.
- B. Warning labels and signs must include, but are not limited to, the following legends:
 - 1. Workspace Clearance Warning: "WARNING OSHA REGULATION AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 3 FEET MINIMUM."
- C. Equipment Identification Labels:
 - 1. Black letters on white field.

2.3 LABELS

- A. Vinyl Wraparound Labels: Preprinted, flexible labels laminated with clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing label ends.
- B. Self-Adhesive Wraparound Labels: Preprinted, 3 mil thick, vinylflexible label with acrylic pressure-sensitive adhesive.
- C. Self-Adhesive Labels: Vinyl, thermal, transfer-printed, 3 mil thick, multicolor, weather- and UV-resistant, pressure-sensitive adhesive labels, configured for intended use and location.

2.4 BANDS AND TUBES

A. Heat-Shrink Preprinted Tubes: Flame-retardant polyolefin tubes with machine-printed identification labels, sized to suit diameter and shrunk to fit firmly. Full shrink recovery occurs at maximum of 200 deg F. Comply with UL 224.

2.5 TAPES AND STENCILS

- A. Underground-Line Warning Tape:
 - 1. Tape:
 - a. Recommended by manufacturer for method of installation and suitable to identify and locate underground electrical and communications utility lines.
 - b. Printing on tape must be permanent and may not be damaged by burial operations.
 - c. Tape material and ink must be chemically inert and not be subject to degradation when exposed to acids, alkalis, and other destructive substances commonly found in soils.
 - 2. Color and Printing:
 - a. Comply with APWA Uniform Color Code using NEMA Z535.1 safety colors.
 - b. Inscriptions for Red Tapes: "CAUTION BURIED ELECTRIC LINE BELOW".
 - c. Inscriptions for Orange Tapes: "CAUTION BURIED TELEPHONE LINE BELOW""CAUTION BURIED FIBER OPTIC LINE BELOW""CAUTION BURIED COMMUNICATION LINE BELOW".

2.6 SIGNS

- A. Baked-Enamel Signs:
 - 1. Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application.
 - 2. Nominal Size: 7 by 10 inch.
- B. Metal-Backed Butyrate Signs:
 - 1. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs, with 0.0396 inch galvanized-steel backing, punched and drilled for fasteners, and with colors, legend, and size required for application.
 - 2. Nominal Size: 10 by 14 inch.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.
- B. Install identifying devices before installing acoustical ceilings and similar concealment.
- C. Verify identity of item before installing identification products.
- D. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.
- E. Apply identification devices to surfaces that require finish after completing finish work.
- F. Install signs with approved legend to facilitate proper identification, operation, and maintenance of electrical systems and connected items.
- G. System Identification for Raceways and Cables under 1000 V: Identification must completely encircle cable or conduit. Place identification of two-color markings in contact, side by side.
 - 1. Secure tight to surface of conductor, cable, or raceway.
- H. Auxiliary Electrical Systems Conductor Identification: Identify field-installed alarm, control, and signal connections.
- I. Elevated Components: Increase sizes of labels, signs, and letters to those appropriate for viewing from floor.
- J. Accessible Fittings for Raceways: Identify cover of junction and pull box of the following systems with wiring system legend and system voltage. System legends must be as follows:
 - 1. "EMERGENCY POWER."
 - 2. "POWER."
- K. Snap-Around Color-Coding Bands: Secure tight to surface at location with high visibility and accessibility.
- L. Heat-Shrink, Preprinted Tubes: Secure tight to surface at location with high visibility and accessibility.
- M. Baked-Enamel Signs:
 - 1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to location and substrate.
 - 2. Unless otherwise indicated, provide single line of text with 1/2 inch high letters on minimum 1-1/2 inch high sign; where two lines of text are required, use signs minimum 2 inch high.
- N. Metal-Backed Butyrate Signs:
 - 1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to location and substrate.
 - 2. Unless otherwise indicated, provide single line of text with 1/2 inch high letters on 1-1/2 inch high sign; where two lines of text are required, use labels 2 inch high.

3.2 IDENTIFICATION SCHEDULE

- A. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.
- B. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, pull points, and locations of high visibility. Identify by system and circuit designation.
- C. Power-Circuit Conductor Identification, 1000 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use vinyl wraparound labelsself-adhesive wraparound labelsself-adhesive vinyl tape to identify phase.
 - 1. Locate identification at changes in direction, at penetrations of walls and floors, at 50 ft maximum intervals in straight runs, and at 25 ft maximum intervals in congested areas.
- D. Instructional Signs: Self-adhesive labels, including color code for grounded and ungrounded conductors.
- E. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Baked-enamel warning signs.
 - 1. Apply to exterior of door, cover, or other access.
- F. Arc Flash Warning Labeling: Self-adhesive labels.
- G. Equipment Identification Labels:

END OF SECTION 26 05 53

SECTION 26 24 16 - PANELBOARDS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Distribution panelboards.
 - 2. Lighting and appliance branch-circuit panelboards.

1.2 DEFINITIONS

- A. MCCB: Molded-case circuit breaker.
- B. SPD: Surge protective device.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of panelboard.
- B. Shop Drawings: For each panelboard and related equipment.
 - 1. Include dimensioned plans, elevations, sections, and details.
 - 2. Detail enclosure types including mounting and anchorage, environmental protection, knockouts, corner treatments, covers and doors, gaskets, hinges, and locks.
 - 3. Detail bus configuration, current, and voltage ratings.
 - 4. Short-circuit current rating of panelboards and overcurrent protective devices.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace panelboards and circuit breakers that fail in materials or workmanship within specified warranty period.
 - 1. Panelboard Warranty Period: 18 months from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PANELBOARDS COMMON REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NEMA PB 1.
- C. Comply with NFPA 70.
- D. Enclosures: Flush and Surface-mounted, dead-front cabinets.
 - 1. Rated for environmental conditions at installed location.
 - a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 - b. Outdoor Locations: NEMA 250, Type 3R.
 - 2. Height: 84 inches maximum to top of panel.
 - 3. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover. Trims shall cover all live parts and shall have no exposed hardware.
- E. Incoming Mains Location: Mains shall be at top or bottom of panel, but shall be in same location as incoming feeder conductors.
- F. Phase, Neutral, and Ground Buses: Tin-plated aluminum or Hard-drawn copper, 98 percent conductivity.
- G. Conductor Connectors: Suitable for use with conductor material and sizes.
 - 1. Material: Tin-plated aluminum or Hard-drawn copper, 98 percent conductivity.
 - 2. Main and Neutral Lugs: Mechanical type, with a lug on the neutral bar for each pole in the panelboard.
 - 3. Ground Lugs and Bus-Configured Terminators: Mechanical type, with a lug on the bar for each pole in the panelboard.
 - 4. Feed-Through Lugs: Mechanical type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
 - 5. Subfeed (Double) Lugs: Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
- H. NRTL Label: Panelboards shall be labeled by an NRTL acceptable to authority having jurisdiction for use as service equipment with one or more main service disconnecting and overcurrent protective devices.
- I. Future Devices: Panelboards shall have mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.

J. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals. Assembly listed by an NRTL for 100 percent interrupting capacity.

2.2 PERFORMANCE REQUIREMENTS

A. Surge Suppression: Factory installed as an integral part of indicated panelboards, complying with UL 1449 SPD Type 1.

2.3 POWER PANELBOARDS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Eaton Electrical Sector; Eaton Corporation.
 - 2. Siemens Energy.
 - 3. Square D; by Schneider Electric.
- B. Panelboards: NEMA PB 1, distribution type.
- C. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
 - 1. For doors more than 36 inches high, provide two latches, keyed alike.
- D. Mains: Circuit breaker, or Lugs only, as indicated on drawings
- E. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes 125 A and Smaller: Bolt-on circuit breakers or Plug-in circuit breakers where individual positive-locking device requires mechanical release for removal.
- F. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers or Plug-in circuit breakers where individual positive-locking device requires mechanical release for removal.
- G. Provide electronic adjustable trip settings (long, short, instantaneous) on all main circuit breakers, on all branch circuit breakers 200 amps or greater.
- H. Provide electronic adjustable trip settings for all branch breakers, regardless of size, for all distribution panels used for life safety loads, and legally required standby loads, and for critical branch loads and equipment branch loads in healthcare applications.

2.4 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Eaton Electrical Sector; Eaton Corporation.

- 2. Siemens Energy.
- 3. Square D; by Schneider Electric.
- B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.
- C. Mains: Circuit breaker or lugs only as indicated in plans.
- D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.
- E. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.

2.5 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Eaton Electrical Sector; Eaton Corporation.
 - 2. Siemens Energy.
 - 3. Square D; by Schneider Electric.
 - 4.
- B. MCCB: Comply with UL 489, with interrupting capacity to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers:
 - a. Inverse time-current element for low-level overloads.
 - b. Instantaneous magnetic trip element for short circuits.
 - 2. Electronic Trip Circuit Breakers:
 - a. RMS sensing.
 - b. Field-replaceable rating plug or electronic trip.
 - c. Digital display of settings, trip targets, and indicated metering displays.
 - d. Multi-button keypad to access programmable functions and monitored data.
 - e. Ten-event, trip-history log. Each trip event shall be recorded with type, phase, and magnitude of fault that caused the trip.
 - f. Integral test jack for connection to portable test set or laptop computer.
 - g. Field-Adjustable Settings:
 - 1) Instantaneous trip.
 - 2) Long- and short-time pickup levels.
 - 3) Long and short time adjustments.
 - 4) Ground-fault pickup level, time delay, and I squared T response.
 - 3. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
 - 4. GFCI Circuit Breakers: Single- and double-pole configurations with Class A ground-fault protection (6-mA trip).

- 5. Arc-Fault Circuit Interrupter Circuit Breakers: Comply with UL 1699; 120/240-V, single-pole configuration.
- 6. Subfeed Circuit Breakers: Vertically mounted.
- 7. MCCB Features and Accessories:
 - a. Standard frame sizes, trip ratings, and number of poles.
 - b. Breaker handle indicates tripped status.
 - c. UL listed for reverse connection without restrictive line or load ratings.
 - d. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials.
 - e. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and HID lighting circuits.
 - f. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 - g. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position.
- C. Fused Switch: NEMA KS 1, Type HD; clips to accommodate specified fuses; lockable handle.

2.6 IDENTIFICATION

- A. Panelboard Label: Manufacturer's name and trademark, voltage, amperage, number of phases, and number of poles shall be located on the interior of the panelboard door.
- B. Breaker Labels: Faceplate shall list current rating, UL and IEC certification standards, and AIC rating.
- C. Circuit Directory: Directory card inside panelboard door, mounted in transparent card holder.

PART 3 - EXECUTION

- 3.1 INSTALLATION
 - A. Comply with NECA 1.
 - B. Install panelboards and accessories according to NEMA PB 1.1.
 - C. Mount top of trim 80 inches above finished floor unless otherwise indicated.
 - D. Mount panelboard cabinet plumb and rigid without distortion of box.
 - E. Where panels are mounted to concrete or CMU walls, provide u-channel supports behind to space panel away from wall.
 - F. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.

- G. Install overcurrent protective devices and controllers not already factory installed.
 - 1. Set field-adjustable, circuit-breaker trip ranges.
- H. Make grounding connections and bond neutral for services and separately derived systems to ground. Make connections to grounding electrodes, separate grounds for isolated ground bars, and connections to separate ground bars.
- I. Install filler plates in unused spaces.
- J. For panels mounted flush in walls, stub four 1-inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch empty conduits into raised floor space or below slab not on grade.
- K. Arrange conductors in gutters into groups and bundle and wrap with wire ties.

3.2 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; install warning signs complying with requirements in Section 26 05 53 "Identification for Electrical Systems."
- B. Create a directory to indicate installed circuit loads; incorporate Owner's final room designations. Obtain approval before installing. Handwritten directories are not acceptable. Install directory inside panelboard door.
- C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."
- D. Device Nameplates: Label each branch circuit device in power panelboards with a nameplate complying with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."
- E. Install warning signs complying with requirements in Section 26 05 53 "Identification for Electrical Systems" identifying source of remote circuit.

3.3 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- C. Tests and Inspections:

- 1. Perform each visual and mechanical inspection and electrical test for low-voltage air circuit breakers stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
- 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- D. Panelboards will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results, with comparisons of the two scans. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

END OF SECTION 26 24 16

SECTION 26 28 16 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 DEFINITIONS

- A. GFEP: Ground-fault circuit-interrupter for equipment protection.
- B. GFLS: Ground-fault circuit-interrupter for life safety.

1.2 ACTION SUBMITTALS

- A. Product Data:
 - 1. For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include nameplate ratings, dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 - 2. Enclosure types and details for types other than UL 50E, Type 1.
- B. Shop Drawings: For enclosed switches and circuit breakers.
 - 1. Include wiring diagrams for power, signal, and control wiring.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled in accordance with NFPA 70, by qualified electrical testing laboratory recognized by authorities having jurisdiction, and marked for intended location and application.

2.2 FUSIBLE SWITCHES

- A. Type HD, Heavy Duty:
 - 1. Single throw.
 - 2. Three pole.
 - 3. 600 V(ac).
 - 4. Lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- B. Accessories:

1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.

2.3 NONFUSIBLE SWITCHES

- A. Type GD, General Duty, Three Pole, Single Throw, 240 V(ac), 600 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept two padlocks, and interlocked with cover in closed position.
- B. Type HD, Heavy Duty, Three Pole, Single Throw, 600 V(ac), 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- C. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.

2.4 MOLDED-CASE CIRCUIT BREAKERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Eaton.
 - 2. Siemens Industry, Inc., Energy Management Division.
 - 3. Square D; Schneider Electric USA.
- B. Circuit breakers must be constructed using glass-reinforced insulating material. Current carrying components must be completely isolated from handle and accessory mounting area.
- C. Circuit breakers must have toggle operating mechanism with common tripping of all poles, which provides quick-make, quick-break contact action. Circuit-breaker handle must be over center, be trip free, and reside in tripped position between on and off to provide local trip indication. Circuit-breaker escutcheon must be clearly marked on and off in addition to providing international I/O markings. Equip circuit breaker with push-to-trip button, located on face of circuit breaker to mechanically operate circuit-breaker tripping mechanism for maintenance and testing purposes.
- D. Maximum ampere rating and UL, IEC, or other certification standards with applicable voltage systems and corresponding interrupting ratings must be clearly marked on face of circuit breaker. Circuit breakers must be 100 percent rated. Circuit breaker/circuit breaker combinations for series connected interrupting ratings must be listed by UL as recognized component combinations. Series rated combination used must be marked on end-use equipment along with statement "Caution Series Rated System. ______ Amps Available. Identical Replacement Component Required."

- E. MCCBs must be equipped with device for locking in isolated position.
- F. Lugs must be suitable for 90 deg C rated wire, sized in accordance with 75 deg C temperature rating in NFPA 70.
- G. Standard: Comply with UL 489 with required interrupting capacity for available fault currents.
- H. Thermal-Magnetic Circuit Breakers: Inverse time-current thermal element for low-level overloads and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
- I. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller, and let-through ratings less than NEMA FU 1, RK-5.
- J. Features and Accessories:
 - 1. Standard frame sizes, trip ratings, and number of poles.
 - 2. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge lighting circuits.

2.5 ENCLOSURES

- A. Enclosed Switches and Circuit Breakers: UL 489, NEMA KS 1, UL 50E, and UL 50, to comply with environsmental conditions at installed location.
- B. Enclosure Finish: Enclosure must be gray baked enamel paint, electrodeposited on cleaned, phosphatized steel (UL 50E Type 1) gray baked enamel paint, electrodeposited on cleaned, phosphatized galvannealed steel (UL 50E Types 3R, 12).
- C. Conduit Entry: UL 50E Types 4, 4X, and 12 enclosures may not contain knockouts. UL 50E Types 7 and 9 enclosures must be provided with threaded conduit openings in both endwalls.

PART 3 - EXECUTION

3.1 SELECTION OF ENCLOSURES

- A. Indoor, Dry and Clean Locations: UL 50E, Type 1.
- B. Outdoor Locations: UL 50E, Type 3R.
- C. Other Wet or Damp, Indoor Locations: UL 50E, Type 4.
- D. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: UL 50E, Type 12.

3.2 INSTALLATION

- A. Comply with manufacturer's published instructions.
- B. Special Techniques:
 - 1. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
 - 2. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.
 - 3. Comply with mounting and anchoring requirements specified in Section 26 05 48.16 "Seismic Controls for Electrical Systems."
 - 4. Temporary Lifting Provisions: Remove temporary lifting of eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
 - 5. Install fuses in fusible devices.

3.3 IDENTIFICATION

- A. Comply with requirements in Section 26 05 53 "Identification for Electrical Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.4 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

END OF SECTION 26 28 16

SECTION 28 31 11 - DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Fire-alarm control unit.
 - 2. Manual fire-alarm boxes.
 - 3. System smoke detectors.
 - 4. Notification appliances.
 - 5. Remote annunciator.
 - 6. Digital alarm communicator transmitter.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product, including furnished options and accessories.
- B. Shop Drawings: For fire-alarm system.
 - 1. Comply with recommendations and requirements in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 - 2. Include plans, elevations, sections, details, and attachments to other work.
 - 3. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and locations. Indicate conductor sizes, indicate termination locations and requirements, and distinguish between factory and field wiring.
 - 4. Detail assembly and support requirements.
 - 5. Include voltage drop calculations for notification-appliance circuits.
 - 6. Include battery-size calculations.

1.3 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Source Limitations for Fire-Alarm System and Components: Components shall be compatible with, and operate as an extension of, existing system. Provide system manufacturer's certification that all components provided have been tested as, and will operate as, a system.
- B. Noncoded, UL-certified addressable system, with multiplexed signal transmission and horn/strobe evacuation.
- C. Automatic sensitivity control of certain smoke detectors.
- D. All components provided shall be listed for use with the selected system.
- E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 SYSTEMS OPERATIONAL DESCRIPTION

- A. Fire-alarm signal initiation shall be by one or more of the following devices and systems:
 - 1. Manual stations.
 - 2. Smoke detectors.
 - 3. Duct smoke detectors.
 - 4. Automatic sprinkler system water flow.
 - 5. Fire-extinguishing system operation.
 - 6.
- B. Fire-alarm signal shall initiate the following actions:
 - 1. Continuously operate alarm notification appliances.
 - 2. Identify alarm and specific initiating device at fire-alarm control unit and remote annunciators.
 - 3. Transmit an alarm signal to the remote alarm receiving station.
 - 4. Switch heating, ventilating, and air-conditioning equipment controls to fire-alarm mode.
 - 5. Close smoke dampers in air ducts of designated air-conditioning duct systems.
 - 6. Activate preaction system.
 - 7. Activate emergency lighting control.
 - 8. Record events in the system memory.
 - 9.
- C. Supervisory signal initiation shall be by one or more of the following devices and actions:
 - 1. Valve supervisory switch.
 - 2. Loss of communication with any panel on the network.

3.

- D. System trouble signal initiation shall be by one or more of the following devices and actions:
 - 1. Open circuits, shorts, and grounds in designated circuits.
 - 2. Opening, tampering with, or removing alarm-initiating and supervisory signal-initiating devices.
 - 3. Loss of communication with any addressable sensor, input module, relay, control module, or remote annunciator.
 - 4. Loss of primary power at fire-alarm control unit.
 - 5. Ground or a single break in internal circuits of fire-alarm control unit.
 - 6. Abnormal ac voltage at fire-alarm control unit.
 - 7. Break in standby battery circuitry.
 - 8. Failure of battery charging.
 - 9. Abnormal position of any switch at fire-alarm control unit or annunciator.
 - 10.
- E. System Supervisory Signal Actions:
 - 1. Initiate notification appliances.
 - 2. Identify specific device initiating the event at fire-alarm control unit and remote annunciators.
 - 3. After a time delay of 200 seconds, transmit a trouble or supervisory signal to the remote alarm receiving station.

2.3 FIRE-ALARM CONTROL UNIT

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. laNotifier.
 - 2. Siemens Industry, Inc.; Fire Safety Division.
 - 3. SimplexGrinnell LP.
- B. General Requirements for Fire-Alarm Control Unit:
 - 1. Field-programmable, microprocessor-based, modular, power-limited design with electronic modules, complying with UL 864.
- C. Alphanumeric Display and System Controls: Arranged for interface between human operator at fire-alarm control unit and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.
 - 1. Annunciator and Display: Liquid-crystal type, 80 characters, minimum.
- D. Notification-Appliance Circuit:

- 1. Audible appliances shall sound in a three-pulse temporal pattern, as defined in NFPA 72.
- 2. Where notification appliances provide signals to sleeping areas, the alarm signal shall be a 520-Hz square wave with an intensity 15 dB above the average ambient sound level or 5 dB above the maximum sound level, or at least 75 dBA, whichever is greater, measured at the pillow.
- 3. Visual alarm appliances shall flash in synchronization where multiple appliances are in the same field of view, as defined in NFPA 72.
- E. Transmission to Remote Alarm Receiving Station: Automatically transmit alarm, supervisory, and trouble signals to a remote alarm station.
- F. Primary Power: 24-V dc obtained from 120-V ac service and a power-supply module. Initiating devices, notification appliances, signaling lines, trouble signals, supervisory signals shall be powered by 24-V dc source.
 - 1. Alarm current draw of entire fire-alarm system shall not exceed 80 percent of the power-supply module rating.

2.4 MANUAL FIRE-ALARM BOXES

- A. General Requirements for Manual Fire-Alarm Boxes: Comply with UL 38.
 - 1. Single-action mechanism, pull-lever type; with integral addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.
 - 2. Station Reset: Key- or wrench-operated switch.

2.5 SYSTEM SMOKE DETECTORS

- A. General Requirements for System Smoke Detectors:
 - 1. Comply with UL 268; operating at 24-V dc, nominal.
 - 2. Detectors shall be four -wire type.
 - 3. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
 - 4. Base Mounting: Detector and associated electronic components shall be mounted in a twist-lock module that connects to a fixed base. Provide terminals in the fixed base for connection to building wiring.
 - 5. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.
 - 6. Integral Visual-Indicating Light: LED type, indicating detector has operated and power-on status.
 - 7. Remote Control: Unless otherwise indicated, detectors shall be digital-addressable type, individually monitored at fire-alarm control unit for calibration, sensitivity, and alarm condition and individually adjustable for sensitivity by fire-alarm control unit.

- a. Rate-of-rise temperature characteristic of combination smoke- and heat-detection units shall be selectable at fire-alarm control unit for 15 or 20 deg F per minute.
- b. Fixed-temperature sensing characteristic of combination smoke- and heat-detection units shall be independent of rate-of-rise sensing and shall be settable at fire-alarm control unit to operate at 135 or 155 deg F.
- c. Multiple levels of detection sensitivity for each sensor.
- d. Sensitivity levels based on time of day.
- B. Photoelectric Smoke Detectors:
 - 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 - 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 - a. Primary status.
 - b. Device type.
 - c. Present average value.
 - d. Present sensitivity selected.
 - e. Sensor range (normal, dirty, etc.).
- C. Duct Smoke Detectors: Photoelectric type complying with UL 268A.
 - 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 - 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 - a. Primary status.
 - b. Device type.
 - c. Present average value.
 - d. Present sensitivity selected.
 - e. Sensor range (normal, dirty, etc.).
 - 3. Weatherproof Duct Housing Enclosure: NEMA 250, Type 4X; NRTL listed for use with the supplied detector for smoke detection in HVAC system ducts.
 - 4. Each sensor shall have multiple levels of detection sensitivity.
 - 5. Sampling Tubes: Design and dimensions as recommended by manufacturer for specific duct size, air velocity, and installation conditions where applied.
 - 6. Relay Fan Shutdown: Fully programmable relay rated to interrupt fan motor-control circuit.

2.6 NOTIFICATION APPLIANCES

A. General Requirements for Notification Appliances: Connected to notification-appliance signal circuits, zoned as indicated, equipped for mounting as indicated, and with screw terminals for system connections.

- 1. Combination Devices: Factory-integrated audible and visible devices in a single-mounting assembly, equipped for mounting as indicated, and with screw terminals for system connections.
- B. Horns: Electric-vibrating-polarized type, 24-V dc; with provision for housing the operating mechanism behind a grille. Comply with UL 464.
- C. Visible Notification Appliances: Xenon strobe lights complying with UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word "FIRE" is engraved in minimum 1-inch- high letters on the lens.
 - 1. Flashing shall be in a temporal pattern, synchronized with other units.
 - 2. Strobe Leads: Factory connected to screw terminals.
 - 3. Mounting Faceplate: Factory finished, white.

2.7 REMOTE ANNUNCIATOR

- A. Description: Annunciator functions shall match those of fire-alarm control unit for alarm, supervisory, and trouble indications. Manual switching functions shall match those of fire-alarm control unit, including acknowledging, silencing, resetting, and testing.
 - 1. Mounting: Flush cabinet, NEMA 250, Type 1.
- B. Display Type and Functional Performance: Alphanumeric display and LED indicating lights shall match those of fire-alarm control unit. Provide controls to acknowledge, silence, reset, and test functions for alarm, supervisory, and trouble signals.

2.8 DIGITAL ALARM COMMUNICATOR TRANSMITTER

- A. Digital alarm communicator transmitter shall be acceptable to the remote central station and shall comply with UL 632.
- B. Functional Performance: Unit shall receive an alarm, supervisory, or trouble signal from fire-alarm control unit and automatically capture two telephone line(s) and dial a preset number for a remote central station. When contact is made with central station(s), signals shall be transmitted. If service on either line is interrupted for longer than 45 seconds, transmitter shall initiate a local trouble signal and transmit the signal indicating loss of telephone line to the remote alarm receiving station over the remaining line. Transmitter shall automatically report telephone service restoration to the central station. If service is lost on both telephone lines, transmitter shall initiate the local trouble signal.
- C. Local functions and display at the digital alarm communicator transmitter shall include the following:
 - 1. Verification that both telephone lines are available.
 - 2. Programming device.

- 3. LED display.
- 4. Manual test report function and manual transmission clear indication.
- 5. Communications failure with the central station or fire-alarm control unit.
- 6.
- D. Digital data transmission shall include the following:
 - 1. Address of the alarm-initiating device.
 - 2. Address of the supervisory signal.
 - 3. Address of the trouble-initiating device.
 - 4. Loss of power.
 - 5.
- E. Secondary Power: Integral rechargeable battery and automatic charger.
- F. Self-Test: Conducted automatically every 24 hours with report transmitted to central station.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION

- A. Comply with NFPA 72, NFPA 101, and requirements of authorities having jurisdiction for installation and testing of fire-alarm equipment. Install all electrical wiring to comply with requirements in NFPA 70 including, but not limited to, Article 760, "Fire Alarm Systems."
- B. Connecting to Existing Equipment: Verify that existing fire-alarm system is operational before making changes or connections.
- C. Install wall-mounted equipment, with tops of cabinets not more than 78 inches above the finished floor.
 - 1. Comply with requirements for seismic-restraint devices specified in Section 26 05 48.16 "Seismic Controls for Electrical Systems."
- D. Manual Fire-Alarm Boxes:
 - 1. Install manual fire-alarm box in the normal path of egress within 60 inches of the exit doorway.
 - 2. Mount manual fire-alarm box on a background of a contrasting color.
 - 3. The operable part of manual fire-alarm box shall be between 42 inches and 48 inches above floor level. All devices shall be mounted at the same height unless otherwise indicated.
- E. Smoke- or Heat-Detector Spacing: Comply with NFPA 72.
- F. Duct Smoke Detectors: Comply with NFPA 72 and NFPA 90A. Install sampling tubes so they extend the full width of duct. Tubes more than 36 inches long shall be supported at both ends.

- G. Remote Status and Alarm Indicators: Install in a visible location near each smoke detector, sprinkler water-flow switch, and valve-tamper switch that is not readily visible from normal viewing position.
- H. Audible Alarm-Indicating Devices: Install not less than 6 inches below the ceiling. Install bells and horns on flush-mounted back boxes with the device-operating mechanism concealed behind a grille. Install all devices at the same height unless otherwise indicated.
- I. Visible Alarm-Indicating Devices: Install adjacent to each alarm bell or alarm horn and at least 6 inches below the ceiling. Install all devices at the same height unless otherwise indicated.
- J. Device Location-Indicating Lights: Locate in public space near the device they monitor.

3.2 CONNECTIONS

- A. Make addressable connections with a supervised interface device to the following devices and systems. Install the interface device less than 36 inches from the device controlled. Make an addressable confirmation connection when such feedback is available at the device or system being controlled.
 - 1. Smoke dampers in air ducts of designated HVAC duct systems.
 - 2. Alarm-initiating connection to activate emergency lighting control.
 - 3. Supervisory connections at valve supervisory switches.
 - 4.

3.3 IDENTIFICATION

- A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."
- B. Install framed instructions in a location visible from fire-alarm control unit.

3.4 GROUNDING

- A. Ground fire-alarm control unit and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to fire-alarm control unit.
- B. Ground shielded cables at the control panel location only. Insulate shield at device location.

3.5 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Visual Inspection: Conduct visual inspection prior to testing.

- a. Inspection shall be based on completed record Drawings and system documentation that is required by NFPA 72 in its "Completion Documents, Preparation" table in the "Documentation" section of the "Fundamentals" chapter.
- b. Comply with the "Visual Inspection Frequencies" table in the "Inspection" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72; retain the "Initial/Reacceptance" column and list only the installed components.
- 2. System Testing: Comply with the "Test Methods" table in the "Testing" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
- 3. Test visible appliances for the public operating mode according to manufacturer's written instructions.
- 4. Factory-authorized service representative shall prepare the "Fire Alarm System Record of Completion" in the "Documentation" section of the "Fundamentals" chapter in NFPA 72 and the "Inspection and Testing Form" in the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
- B. Reacceptance Testing: Perform reacceptance testing to verify the proper operation of added or replaced devices and appliances.
- C. Fire-alarm system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.
- E. Maintenance Test and Inspection: Perform tests and inspections listed for weekly, monthly, quarterly, and semiannual periods. Use forms developed for initial tests and inspections.
- F. Annual Test and Inspection: One year after date of Substantial Completion, test fire-alarm system complying with visual and testing inspection requirements in NFPA 72. Use forms developed for initial tests and inspections.

3.6 SOFTWARE SERVICE AGREEMENT

- A. Comply with UL 864.
- B. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.
- C. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.
 - 1. Upgrade Notice: At least 30 days to allow Owner to schedule access to system and to upgrade computer equipment if necessary.

3.7 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain fire-alarm system.

END OF SECTION 28 31 11

SECTION 31 00 00 – CONTROL OF SITE WORK

PART 1 - GENERAL

1.1 WORK INCLUDES:

- A. All division 31, 32, and 33 specification sections.
- B. Permitting.

1.2 VERIFY EXISTING CONDITIONS:

A. Contractor shall study the site survey, site demolition drawing, and have the Utility Locator Service mark existing underground utilities prior to construction operations. The Contractor shall locate private utilities. If existing conditions are different than reflected in the site drawings, notify the Owner's Agent for further instruction, and do not proceed with operations until written direction is given. Do not disconnect any utilities until approved by both the property and utility Owner.

1.3 OPERATION OF ADJACENT FACILITIES:

A. Contractor shall maintain operation of adjacent facilities, including pedestrian and vehicular traffic circulation on neighboring properties and roadways. Any required closures shall be coordinated and approved by all adjacent property Owners in writing, including authorities of jurisdiction, prior to commencing construction operations. Provide an alternate route that meets the Americans With Disabilities Act (ADA) requirements.

1.4 PROTECT EXISTING STRUCTURES AND UTILITIES:

- A. Protect and maintain the provided benchmarks and survey control points from disturbance during construction. Replacement of any control that is disturbed by construction activities shall be by a Registered Land Surveyor at the Contractor's expense.
- B. Contractor to repair damaged field tile as a result of construction operations.
- C. Locate and clearly flag trees and plantings that are identified to remain or to be relocated. Place construction fencing around trees and plantings to remain at the dripline to protect the root system.
- D. Contractor shall restore any items damaged by construction operations including but not limited to: sidewalks, driveways, roadways, lawns, utilities, walls, and building structures, at no additional expense to the Owner.
- E. All construction traffic on roadways and driveways shall be limited to legal weights and measures.

1.5 EROSION CONTROL:

- A. Any erosion of soils or dust generated from construction activities shall be controlled in a manner that will not adversely impact the adjacent properties and roadways. See the erosion control specification for further requirements.
- B. Prevent surface water and ground water from entering excavations, from ponding on prepared subgrades, and from flooding Project site and surrounding area. Protect subgrades from softening, undermining, washout, and damage by rain or water accumulation. Install a dewatering system to keep subgrades dry and convey ground water away from excavations. Maintain until dewatering is no longer required.
- C. Stockpile soil materials to be re-used in an area designated by the Owner. Grade all piles to provide positive drainage of storm water. Provide temporary seeding according to the site drawings to stabilize sloped surfaces from erosion. Excess satisfactory and all unsatisfactory soil material shall be removed off site and legally disposed of.
- D. All disturbed areas shall be fine graded and broadcast seeded. Slopes greater than 4:1 shall have erosion control fabric placed as part of the seeding and restoration process.

1.6 PERMITTING:

- A. Contractor shall review and understand any conditions or special provisions of the Improvement Location Permit with the City Planning Office. The contractor is responsible for all requirements of the permit.
- B. Contractor shall be responsible to pay all permit fees, connection fees, testing fees, and inspection fees required to perform work.

1.7 RECORD DRAWINGS:

A. Record Drawings: Contractor shall provide a set of record drawings (certified by a Land Surveyor in the State of Indiana) to the owner. Include size, material, depth of cover, location, and elevation of all improvements within the contract documents. Include details of underground structures and connections. Identify any items that deviate from the contract documents including but not limited to: underground utilities, finish grades, substitutions if approved, detail modification, etc.

END OF SECTION 31 00 00

SECTION 31 10 00 - SITE DEMOLITION

PART 1 - GENERAL

1.1 WORK INCLUDES:

- A. Removal of trees and plantings.
- B. Clearing and grubbing existing ground surface.
- C. Stripping topsoil as required.
- D. Demolition of underground utilities.
- E. Protection of existing structures.
- F. Demolition of site structures not classified as a building.

1.2 REFERENCE STANDARDS AND SPECIFICATIONS:

- A. Site Earthwork specification for excavation, backfill, and compaction requirements.
- B. Control of Site Work Specification.

1.3 RECORD OF EXISTING CONDITIONS:

A. Provide photographs or videotape to sufficiently detail the existing condition of trees, plantings, adjoining construction, existing roadways, and existing structures that are indicated to remain.

1.4 CONTROL OF WORK:

A. The Contractor shall record all utilities encountered during the clearing and demolition operations. Any additional expense related to uncovering and locating un-marked utility services, or buried drain tile known by the contractor prior to the completion of work, will be the contractor's expense.

1.5 TREE PROTECTION:

- A. Protect trees identified to remain from damage during construction. Damaged trees will be repaired or replaced as determined by the Owner's arborist at the Contractor's expense.
- B. Provide and install a temporary construction fence around trees and plantings identified to remain. Do not store materials, construction equipment or drive vehicles within the barricaded area. Remove the temporary fence when construction is complete.

1.6 PROTECTION OF EXISTING STRUCTURES AND UTILITIES:

A. Protect existing utilities and building structures not identified to be removed from damage during construction. Damaged utilities will be repaired or replaced at the Contractor's expense.

PART 2 - REMOVALS

2.1 TOPSOIL STRIPPING:

A. Remove sod and grass before stripping topsoil. Strip topsoil as required within the disturbed area as identified on the site plans. Excess and unsuitable topsoil, including trash, debris, weeds, roots, and other waste materials shall be removed from site and properly disposed of.

2.2 CLEARING AND GRUBBING:

- A. Remove trees, shrubs, grass, stumps, roots, and other vegetation as identified on the site demolition plan.
- B. Fill depressions caused by clearing and grubbing operations with standard fill material according to the earthwork specification, unless further excavation or earthwork is indicated to establish proposed subgrade elevations. Provide temporary drainage for any areas that may trap storm runoff prior to completing excavation operations.

2.3 WATER DISTRIBUTION SYSTEM

- A. Coordinate shut down of water utility with the utility company and building owner. Assure that all sections of piping identified to be removed are fully isolated from the distribution system prior to demolition operations. Assure protection of the domestic water supply from all contaminants.
- B. Piping removal: Excavate and completely remove piping as identified on the plans. All removed utilities under parking areas or building foundations and slabs shall be backfilled with #53/#73 crushed limestone.
- C. Pipe abandonment: Existing water piping that will not interfere with proposed improvements as shown on the drawings may be abandoned in place by completely filling with flowable concrete fill. Any existing piping that lies within the influence of proposed building foundations, including floor slabs, must be removed. If abandoned water piping is considered rigid and not within the influence of proposed improvements the ends may be plugged with a water tight fitting in lieu of completely filling with flowable concrete fill.
- D. Structure removal: Completely remove all hydrants, valves, and miscellaneous appurtenance.

2.4 PAVEMENT REMOVAL:

A. Remove concrete slabs, paving, curbs, gutters, and aggregate base as indicated. Saw-cut the existing pavement indicated to remain full depth before removal operations to provide a clean line of separation.

2.5 HAZARDOUS MATERIALS:

A. Although no hazardous materials are suspected within the project boundary, the Contractor shall immediately report any suspected hazardous materials encountered during demolition operations to the Owner's Agent. Hazardous waste removal and disposal will be performed by a licensed contractor to do the work outside the scope of this section.

2.6 DISPOSAL:

A. All cleared materials shall become the Contractor's property, except for materials indicated to be salvaged for the Owner. Store and protect all salvaged items in the area identified by the Owner's Agent. Remove surplus soil material, unsuitable topsoil, obstructions, demolished materials, and waste materials, including trash and debris, and legally dispose of them off the Owner's property.

END OF SECTION 31 10 00

SECTION 31 20 00 - SITE EARTHWORK

PART 1 - GENERAL

1.1 WORK INCLUDES:

- A. Site earthwork as shown on the Site Plans within the project limits.
- B. Excavation and Backfill for site utilities.

1.2 REFERENCE STANDARDS AND SPECIFICATIONS:

- A. Terms and conditions of construction as required by the Contractor's permit with the controlling agency. When conditions of the permit conflict with proposed work, the contractor shall notify the Engineer for correction prior to installation. Any non-compliant work performed by the Contractor shall be at the Contractor's expense.
- B. Site Demolition specification for removals and topsoil stripping.
- C. Control of Site Work Specification.
- 1.3 UNKNOWN CONDITIONS (change to contract):
 - A. Rock: Material 1 cy and larger that exceeds a standard penetration resistance of 100 blows/2 inches. Notify the Owner's Agent if any rock is encountered. Removal of material will be considered a change to the contract. Work shall not commence until instructed by the Owner's Agent.
 - B. Unsuitable subgrade: Notify the Owner's Agent if any unsuitable subgrade is encountered. Stabilization of subgrade material above and beyond as stated in part two of this section, will be considered a change to the contract beyond the work covered in this specification. Work shall not commence until instructed by the Owner's Agent.

1.4 TESTING:

A. Owner will engage a qualified independent geotechnical engineering testing agency to perform field quality-control testing. See Part II of this specification for testing requirements.

1.5 FINISH GRADING:

A. Final grades shall direct storm water to all collection points and meet the intent of the storm water management plan as identified in the site drawings. Establish grades to within required tolerances. Fill any settled areas as required to meet the specifications within the one year

warranty period. Final grade is defined as the elevation of the final surface, including any mulching material in landscaping beds, applied rubberized surfaces, etc.

1.6 EARTHWORK BALANCE:

A. No guarantee is made that the site grading plan provides a balanced site condition. The contractor shall import or export soil materials from site as required to meet the conditions of the construction documents.

1.7 PROTECTION OF EXPOSED GRADE:

A. Protect exposed layers against freezing temperatures, frost, rain, accumulated water, and construction activities, including any open excavations and utility trenches. Reconstruction of damaged layers will be corrected by the contractor according to this specification at no additional cost to the Owner, including areas previously approved by the Geotechnical Engineer.

PART 2 - INSTALLATION

- 2.1 PREPARATION OF SUBGRADE:
 - A. Soil surface immediately below proposed fills (after stripping topsoil) and bottom of proposed excavations (in cut areas).
 - B. See the site demolition specification for site clearing requirements.
 - C. Notify Geotechnical Engineer when excavations have reached the required subgrade elevations for approval prior to continuing with backfill and fill operations. The contractor shall proof roll the existing subgrade that is not wet or saturated with heavy pneumatic-tired equipment of not less than 10 ton rated weight and identify any soft pockets or areas of excessive yielding. The contractor shall re-work the existing subgrade material to the depth and moisture content as recommended in the soil report. The subgrade will not be approved until both minimum compaction, and optimum moisture content is achieved.

2.2 SUBGRADE STABILIZATION (change to contract):

- A. Any stabilization measures must be authorized by the owner and approved by the Geotechnical Engineer prior to operations or all work shall be at the contractor's risk. No payment will be made for unauthorized work.
- B. If the Geotechnical Engineer determines that unsatisfactory soils are present, continue the excavation and replace with compacted backfill or fill material as directed and after the Owner approves. Additional excavation and replacement material will be paid for according to Contract provisions for changes in the Work. Any stabilization measures must be authorized by the owner and approved by the geotechnical engineer prior to operations or all work shall be at the contractor's risk. No payment will be made for unauthorized work.

2.3 BACKFILL AND FILL:

- A. Soil materials used to fill an excavation or raise existing grades.
- B. Subgrade Backfill and Fill: Do not place backfill or fill material on surfaces that are muddy, frozen, wet, or contain frost or ice. Place backfill and fill materials in layers not more than 8 inches in loose depth for material compacted by heavy compaction equipment, and not more than 4 inches in loose depth for material compacted by hand-operated tampers.
- C. Foundation and Slab Backfill and Fill: Do not place backfill or fill material on surfaces that are muddy, frozen, wet, or contain frost or ice. Place backfill and fill materials in layers not more than 6 inches in loose depth for material compacted by heavy compaction equipment, and not more than 4 inches in loose depth for material compacted by hand-operated tampers.
- D. The Geotechnical Engineer shall test each lift for compliance with the specifications prior to continuing with backfill and fill operations. Each fill and backfill layer will not be approved until both minimum compaction, and optimum moisture content is achieved.
- E. Moisture content: Each fill and backfill layer shall be within 2% of the materials optimum moisture content.
- F. Standard Fill Material: ASTM D 2487 soil classification groups GW, GP, GM, SW, SP, and SM, CL, or a combination of these group symbols; free of rock or gravel larger than 3 inches in any dimension, debris, waste, frozen materials, vegetation, and trash.
- G. Unsuitable Soils: ASTM D 2487 soil classification groups GC, SC, ML, MH, CH, OL, OH, and PT, or a combination of these group symbols, and standard fill material not maintained within 2 percent of optimum moisture content at time of compaction.
- H. Engineered Fill: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; with at least 90 percent passing a 1-1/2-inch sieve and not more than 12 percent passing a No. 200 sieve.
- I. Topsoil: Natural or cultivated surface-soil layer containing organic matter and sand, silt, and clay particles; friable, pervious, and black or a darker shade of brown, gray, or red than underlying subsoil; reasonably free of subsoil, clay lumps, gravel, and other objects more than 2 inches in diameter; and free of weeds, roots, and other deleterious materials.
- J. Amended Topsoil: Topsoil shall be fertile soil capable of sustaining vigorous plant growth, taken from a well drained site. Contractor to amend topsoil onsite to meet the following requirement. It should be free of subsoil, clay or impurities such as plants, weeds, and roots. It should have a minimum ph value of 5.5 and maximum of 7.4.

2.4 PAVEMENTS AND SITE SLABS ON GRADE:

- A. Subgrade: scarify and compact the top 12 inches of existing subgrade, and each following lift of fill or base material to 95 percent of maximum dry unit weight according to ASTM D 1557 (modified proctor). Establish grades to within 1" of proposed.
- B. Fill Material: Place and compact each lift with standard fill material to the bottom of the aggregate base layer.

- C. Aggregate Base: See site drawings for material.
- D. Frequency of testing: Coordinate with the Geotechnical Engineer to perform a minimum of one test per 500 sf.
- 2.5 WALKWAYS:
 - A. Subgrade: scarify and compact the top 12 inches of existing subgrade, and each following lift of fill or base material to 95 percent of maximum dry unit weight according to ASTM D 1557 (modified proctor). Establish grades to within 1" of proposed.
 - B. Fill Material: Place and compact each lift with standard fill material to the bottom of the aggregate base layer.
 - C. Aggregate Base: See site drawings for material.
 - D. Frequency of testing: Coordinate with the Geotechnical Engineer to perform a minimum of one test per 50 lf.
- 2.6 BUILDING STRUCTURES:
 - A. Buildings, floor slabs, foundations, retaining walls, tanks, or other stationary features.
 - B. Subgrade: scarify and compact the top 12 inches of existing subgrade, and each following lift of fill or base material to 98 percent of maximum dry unit weight according to ASTM D 1557 (modified proctor). Establish grades to within 1" of proposed.
 - C. Subgrade Fill Material: Place and compact each lift with standard fill material, unless noted otherwise on drawings, to subgrade elevations directly beneath the bottom of the aggregate base layer.
 - D. Foundation Wall Backfill: Engineered Fill material unless noted otherwise on the building construction drawings.
 - E. Floor Slab Aggregate Base: See building plans for material.
 - F. Fill unauthorized excavation under structures by extending bottom elevation of concrete foundation or footing to excavation bottom, without altering top elevation. Lean concrete fill may be used when approved by Engineer.
 - G. Frequency of testing: Coordinate with the Geotechnical Engineer to perform a minimum of one test per 500 sf of building slab, one test per 50 lf of foundations, one test per column footing.
- 2.7 LANDSCAPING BEDS:
 - A. Fill Material: Amended topsoil shall be placed in planting beds and lightly compacted.
 - B. Contractor shall repair any settled areas to meet project specifications within the warranty period.
 - C. Amended topsoil shall be used in landscaping areas.

2.8 UTILITY TRENCH EXCAVATION AND BACKFILL:

- A. Notify Geotechnical Engineer when excavations have reached the required bottom of trench elevation prior to continuing with backfill and fill operations. If the Geotechnical Engineer determines that unsatisfactory soils are present, the Engineer will instruct the contractor on corrective measures. Additional work required to correct and stabilize the existing subgrade will be paid for according to Contract provisions for changes in the Work.
- B. Fill material required to re-establish the trench bottom due to over-excavation of the utility trench will be bedding material, and placed by the contractor at no additional cost to the Owner.
- C. Place and shape the pipe bedding material as shown on the site drawings to provide continuous support for the conduit. Place and compact the initial backfill to a height of 12 inches over the utility pipe. Carefully compact backfill material under the pipe haunches and bring up evenly on both sides.
- D. Backfill material: See site drawings.
- E. Frequency of testing: Coordinate with the Geotechnical Engineer to perform a minimum of one test per 100 lf per lift.

2.9 DRAINAGE STRUCTURE EXCAVATION AND BACKFILL:

- A. Notify Geotechnical Engineer when excavations have reached the required the bottom of trench elevation prior to continuing with backfill and fill operations. If the Geotechnical Engineer determines that unsatisfactory soils are present, the Engineer will instruct the contractor on corrective measures. Additional work required to correct and stabilized the existing subgrade will be paid for according to Contract provisions for changes in the Work.
- B. Fill material required to re-establish the bottom of excavation due to over-excavation of the utility trench will be bedding material, and placed by the contractor at no additional cost to the Owner.
- C. Place and compact a 6" minimum depth foundation of Class I or Class II special fill material according to ASTM D2321. After placement of structure and connection of sewer piping, continue special fill to a minimum of 12" above sewer piping in lawn areas, and to subgrade elevation in paved areas or within the influence of building foundations or site slabs on grade.
- D. Frequency of testing: Coordinate with the Geotechnical Engineer to perform a minimum of one test per structure.

END OF SECTION 31 20 00

SECTION 32 12 16 – BITUMINOUS CONCRETE PAVEMENT

PART 1 - GENERAL

1.1 WORK INCLUDES:

A. Asphalt paving for roadways.

1.2 REFERENCE STANDARDS AND SPECIFICATIONS:

- A. Site Earthwork specification for subgrade and aggregate base requirements.
- B. Terms and conditions of construction as required by the Contractor's permit with the controlling agency. When conditions of the permit conflict with proposed work, the contractor shall notify the Engineer for correction prior to installation. Any non-compliant work performed by the Contractor shall be at the Contractor's expense.
- C. State Department of Transportation for pavement design mix specification as defined on the site drawings.
- D. INDOT Standard Specifications Section 402, latest edition.
- E. Asphalt Paving Publication AI MS-22, "Construction of Hot Mix Asphalt Pavements."
- F. Control of Site Work Specification.

1.3 DELIVERABLES:

- A. Contractor must provide proof of certification by either the State Department of Transportation or controlling municipality for paving work.
- B. Record Drawings: Include size, material, depth of cover, location, and elevation of all improvements within the contract documents. Include details of underground structures and connections.
- C. Material certificates for the pavement design mix.
- D. Tack coat material.
- E. Passing test reports.

1.4 CONTROL OF WORK:

A. Schedule tests and inspections with the Owner's Geotechnical Engineer and as required under the conditions of the permit. The finished paving will not be accepted or considered complete

until all improvements pass the testing requirements of these specifications and the permitting authority.

- B. Comply with INDOT Standard Specifications latest edition, Section 402 for paving work.
- C. Comply with Asphalt Institute (AI) MS-22 "Construction of Hot Mix Asphalt Pavements".

PART 2 - PRODUCTS

- 2.1 AGGREGATE BASE:
 - A. See the site drawings for material requirements. See the Earthwork Specification for subgrade compaction and installation requirements.

2.2 TACK COAT:

- A. Emulsified asphalt according to ASTM D 977.
- B. Minimum surface temperature of 60 deg F
- C. Apply uniformly to all exposed existing asphalt surfaces at point of contact with new paving at a rate of 0.10 gallons per square yard.

2.3 ASPHALT BASE COURSE:

- A. See the site drawings for the Department of Transportation design mix.
- B. Do not place asphalt until the surface temperature is a minimum of 40 deg F and rising at time of placement.
- C. Do not apply asphalt materials if the aggregate base shows signs of yielding or the subgrade is wet or excessively damp.
- D. Spread mix at minimum temperature of 250 deg F at a thickness according to the recommendations of the State Department of Transportation.
- E. Complete breakdown rolling and examine surface immediately after roller passes. Correct as required to comply with this section.
- F. Complete intermediate rolling to achieve a compaction of 92 percent (+/- 2%) of reference maximum theoretical density according to ASTM D 2041 before mix temperature cools to 185 deg F.
- G. Compact each course to within a tolerance of 1/2 inch in lifts not exceeding 2" total thickness. Surface smoothness as determined by using a 10-foot straightedge applied transversely or longitudinally to paved areas shall be within a tolerance of 1/4 inch.

- H. Complete finish rolling while the pavement is still warm.
- I. After final rolling, do not permit vehicular traffic on pavement until it has cooled and hardened.
- J. Frequency of testing: Coordinate with the Owner's Geotechnical Engineer to collect one sample of hot-mix asphalt material per lift to determine design mix properties.

2.4 ASPHALT SURFACE COURSE:

- A. See the site drawings for the Department of Transportation design mix.
- B. Do not place asphalt until tack coat has fully cured, and the surface temperature is a minimum of 60 deg F and rising at time of placement.
- C. Spread mix at minimum temperature of 250 deg F at a thickness according to the recommendations of the State Department of Transportation.
- D. Complete breakdown rolling and examine surface immediately after roller passes. Correct as required to comply with this section.
- E. Complete intermediate rolling to achieve a compaction of 92 percent (+/- 2%) of reference maximum theoretical density according to ASTM D 2041 before mix temperature cools to 185 deg F.
- F. Compact each course to within a tolerance of 1/4 inch in lifts not exceeding 2" total thickness. Surface smoothness as determined by using a 10-foot straightedge applied transversely or longitudinally to paved areas shall be within a tolerance of 1/8 inch.
- G. Complete finish rolling while the pavement is still warm.
- H. After final rolling, do not permit vehicular traffic on pavement until it has cooled and hardened
- I. Frequency of testing: Coordinate with the Owner's Geotechnical Engineer to collect one sample of hot-mix asphalt material per lift to determine design mix properties.

2.5 JOINTS:

A. Tack coat all exposed joint surfaces. Offset and install joints as described in AIMS-22, "Construction of Hot Mix Asphalt Pavements."

END OF SECTION 32 12 16
SECTION 32 13 13 – PORTLAND CEMENT CONCRETE PAVEMENT

PART 1 - GENERAL

1.1 WORK INCLUDES:

- A. Concrete paving for site slabs on grade.
- B. Concrete paving for drives.
- C. Concrete paving for roadways.
- D. Concrete for curb.
- E. Concrete for walkways.
- F. Sealants for construction joints.
- G. Sealants for expansion joints.

1.2 REFERENCE STANDARDS AND SPECIFICATIONS:

- A. Site Earthwork specification for subgrade and aggregate base requirements.
- B. Terms and conditions of construction as required by the Contractor's permit with the controlling agency. When conditions of the permit conflict with proposed work, the contractor shall notify the Engineer for correction prior to installation. Any non-compliant work performed by the Contractor shall be at the Contractor's expense.
- C. ACI Publications: Comply with ACI 301, "Specification for Structural Concrete," unless modified by the requirements of the Contract Documents.
- D. CRSI's "Manual of Standard Practice"
- E. CRSI's "Placing Reinforcing Bars"
- F. Control of Site Work specification.

1.3 DELIVERABLES:

- A. Record Drawings: Include size, material, depth of cover, location, and elevation of all improvements within the contract documents. Include details of underground structures and connections.
- B. Material certificates for the pavement design mix according to ACI 211.1 and ACI 301.

- C. Passing test reports.
- D. Manufacturer Qualifications: Manufacturer of ready-mixed concrete products complying with ASTM C 94 requirements for production facilities and equipment.
- E. Submittal for hot applied joint sealant.
- F. Submittal for cold applied joint sealant.
- 1.4 CONTROL OF WORK:
 - A. Schedule tests and inspections with the Owner's Geotechnical Engineer and as required under the conditions of the permit. The finished paving will not be accepted or considered complete until all improvements pass the testing requirements of these specifications and the permitting authority.

PART 2 - PRODUCTS

2.1 AGGREGATE BASE:

A. See the site drawings for material requirements. See the Earthwork Specification for subgrade compaction and installation requirements.

2.2 CONCRETE MATERIALS:

- A. Provide ready mixed concrete according to ASTM C 94 with the following properties: 4000 psi at 28 day compressive strength, 0.45 maximum water to cement ratio, and a 4" maximum slump limit. Provide admixtures to establish an air content of 4.5 to 7.5% according to ASTM C 260
- B. Portland Cement: ASTM C 150, Type I or II. Aggregate: ASTM C 33, uniformly graded, from a single source.
- C. Water: ASTM C 94
- D. Provide a medium textured broom finish on all surfaces unless noted otherwise on the plans.
- E. Allowable Water-Reducing Admixture according to ASTM C 494, Type A
- F. General: Admixtures certified by manufacturer to contain not more than 0.1 percent watersoluble chloride ions by mass of cement and to be compatible with other admixtures
- G. Bonding Agent: ASTM C 1059, Type II, non-redispersible, acrylic emulsion or styrene butadiene.

2.3 CONSTRUCTION JOINTS:

- A. Place joints at the end of concrete pouring operations if more than 30 minutes has elapsed.
- B. Provide joint filler strips according to ASTM D 1751 or ASTM D 1752 and type SL Silicone Sealant complying with ASTM D 5893 for Type SL. Install per the manufacturer's recommendations and according to ASTM C 1193.
- C. Continue reinforcing steel through the construction joint and lap bars of a sufficient development length to assure a good bond with future concrete placement.

2.4 EXPANSION JOINTS:

- A. Place joints at the interface between new concrete pavement and: concrete curbs, site structures, building stoops, and at maximum intervals of 50 feet.
- B. Provide joint filler strips according to ASTM D 1751 or ASTM D 1752 and type SL Silicone Sealant complying with ASTM D 5893 for Type SL. Install per the manufacturer's recommendations and according to ASTM C 1193.
- C. Do not continue reinforcing steel through the expansion joint.

2.5 CONTRACTION JOINTS:

A. Sawcut or hand tool contraction joints in the locations identified on the site drawings. The minimum depth of all joints shall be 25% of the total pavement thickness. Tooled joints shall be a minimum of 1/8" wide, with ¹/₄" radii. Sawcut joints shall be a minimum of 1/8". Joint sealants are not required at contraction joint locations.

2.6 CURING MATERIALS:

A. Provide curing materials after initial placement of concrete. Acceptable methods include: Polyethylene sheeting according to ASTM C 171, burlap cloth according to AASHTO M 182, Class 2, and clear solvent according to ASTM C 309, Type 1, Class B.

2.7 CONCRETE PLACEMENT:

- A. Proof-roll prepared subbase surface to check for unstable areas and verify need for additional compaction.
- B. Remove snow, ice, or frost from subbase surface and reinforcement before placing concrete. Do not place concrete on frozen surfaces. Do not place concrete when the surface temperature is below 40 deg F.

- C. Install clean forms and apply a release agent prior to concrete placement. Use flexible forms for radii that are less than 100'. Allow forms to set for a minimum of 24 hrs after concrete placement before removal.
- D. Moisten subbase to provide a uniform dampened condition at the time concrete is placed. Do not place concrete around manholes or other structures until they are at the required finish elevation and alignment.
- E. Comply with requirements and with recommendations in ACI 304R for measuring, mixing, transporting, and placing concrete.
- F. Do not add water to concrete during delivery, at Project site, or during placement.
- G. Consolidate concrete by mechanical vibrating equipment supplemented by hand-spading, rodding, or tamping. Use equipment and procedures to consolidate concrete according to recommendations in ACI 309R.
- H. Cold-Weather Placement: Comply with ACI 306 R. When air temperature has fallen to or is expected to fall below 40 deg F, uniformly heat water and aggregates before mixing to obtain a concrete mixture temperature of not less than 50 deg F and not more than 80 deg F at point of placement. Do not use frozen materials or materials containing ice or snow. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators, unless otherwise specified and approved in mix designs.
- I. Hot-Weather Placement: Place concrete according to recommendations in ACI 305R. Cool ingredients before mixing to maintain concrete temperature at time of placement below 90 deg F.
- J. Tolerance: Gap below 10-foot long, unleveled straightedge not to exceed 1/8 inch. Comply with tolerances of ACI 117 and as follows: Thickness: Plus 3/8 inch, minus 1/4 inch. Elevation: 1/4 inch.

2.8 TESTING:

- A. Reports of compressive-strength tests shall include: concrete type and class, location of concrete batch in pavement, design compressive strength at 28 days, concrete mix proportions and materials, compressive breaking strength, and type of break for both 7- and 28-day tests.
- B. Additional Tests: Testing agency shall make additional tests of the concrete when test results indicate slump, air entrainment, concrete strengths, or other requirements have not been met, as directed by Architect. Testing agency may conduct tests to determine adequacy of concrete by cored cylinders complying with ASTM C 42, or by other methods as directed.
- C. Frequency of testing: Coordinate with the Geotechnical Engineer to perform a minimum of one test per load delivered to the site.

SECTION 32 93 00 – SITE LANDSCAPING

PART 1 - GENERAL

1.1 WORK INCLUDES:

A. Site Landscaping.

1.2 REFERENCE STANDARDS AND SPECIFICATIONS:

- A. All plants provided shall meet all applicable requirements of ANSI z60.1 "American Standard for Nursery Stock."
- B. Site Earthwork Specification.
- C. Control of Site Work specification.

1.3 CONTROL OF WORK:

- A. Remove or replace damage to paving, sidewalks, or other materials at no cost to the owner.
- B. Contractor shall protect all plant material during construction. Any material damaged during construction shall be treated, repaired or replaced by the contractor as directed by the architect.
- C. Provide plants according to measurements indicated. Plants larger in size than specified may be used when approved by the Landscape Architect.
- D. Contractor shall not substitute different plants or different varieties of the plant designated on the bid documents without the approval of the Architect. Any plant materials that are substituted by the contractor without the prior approval of the Architect shall be removed from the project site at the contractor's expense and replaced with the plants specified on the bid documents. If a discrepancy occurs between the Common Name and Botanical Name on the Plant Schedule than the contractor shall ask the Architect to clarify the intended plant prior to any plants being purchased.
- E. The Architect also has the right to inspect the plant materials condition of the root balls and root systems and check for insects, injuries or defects. The Architect has the right to reject any unsatisfactory or defective plant material at any time during the progress of the work. The Contractor shall remove all rejected plant material from the site and submit new plant material for Architects approval.
- F. All care shall be taken to ensure healthy, vigorous plants are delivered to the site. No plant material shall be dropped or bent during delivery, and protective coverings shall be used during transportation. Plants will be rejected by Architect if in poor health and/or damaged during delivery.

- G. Plants shall have been grown in the same or colder climatic zone as this Project location, and in similar soil types.
- H. Only deliver plants to the site when planting is ready to begin. If a delay arises of more than 6 hours, move plants to a shaded protected site, and keep roots moist. Also, ensure the plants are protected from mechanical damage.
- I. If any conditions arise which would be harmful to any of the plants such as drainage problems, gravel filled planting holes or utility conflicts then the Architect shall be notified. Examine planting areas, test drainage of plant beds and pits by filling with water twice in succession. Notify Architect of conditions permitting water retention in the beds and pits for more than twenty-four (24) hours. Unsatisfactory conditions might require the plants to be relocated elsewhere on the site.
- J. Planting shall not commence until all unsatisfactory conditions are corrected.
- K. All plants shall be installed during the optimum planting season for each variety that is required.
- L. A one-year warranty shall be provided for all plant material. The one-year warranty shall start from the date of substantial completion. Plants will not be accepted unless they are alive and healthy. The Contractor shall replace plants which are dead, or in the opinion of the Architect, are in an unhealthy or unsightly condition, or have lost their natural shape due to dead branches, excessive pruning, or other causes, with same size and species originally installed.
- M. The Contractor will not be responsible for defects resulting from the direct result of owner negligence, abuse, lack of maintenance such as watering, if the Contractor was not under a maintenance agreement at the time, or unusual phenomena or incidents beyond the landscape installer's control which result from natural causes such as floods, lightning, storms, freezing rain, winds over 60 mph, fires or vandalism.
- N. Replacements shall be a plant of the same species and size as indicated on the plans. Contractor shall plant replacements in the next growing season, with a new warranty commencing on date of replacement at no cost to owner.

PART 2 - PRODUCTS

A. If a discrepancy is found between the quantities shown on the plant list and on the planting plan, then the planting plan shall take precedence.

2.2 PLANTS

- A. See the site Landscape Plan for material selection and specifications.
 - 1. Provide healthy plants in removable containers or peat pots in the sizes as indicated on the plans. Plants that do not comply with these standards shall be rejected by the architect.

2.3 TOPSOIL

A. See Site Earthwork Specification #31 20 00 for topsoil information.

2.4 FERTILIZER

A. Provide a slow-release granular fertilizer. Fifty percent of the fertilizer shall be derived from organic sources with the composition of 20 percent nitrogen, 10% phosphorus, and 10% potassium by weight. Fertilize trees and shrubs in accordance to manufacturer's recommendations.

2.5 MULCHES

- A. The mulching material shall consist of organic shredded hardwood mulch which is free from any weeds or harmful materials, and is suitable for use around plant materials.
- B. The mulch shall be 3 inches in depth and level with adjacent surfaces. No mulch shall be placed directly against trunks or stems of any plant material.
- C. Mulch within twenty-four (24) hours after planting. Spread uniform thickness of three (3) inches unless otherwise shown on the Construction Documents. Keep mulch out of crowns of shrubs and away from the root flare of trees, and off buildings, sidewalks, light standards and other structures.

2.6 WEED CONTROL

A. To control weed growth apply an herbicide such as Teflan or approved equal prior to planting to all plant beds. Ensure that the herbicide is safe to use around plant materials specified. Any damage to plant material from the herbicide will be the contractor's responsibility to replace.

2.7 WATER

A. Provide uniform coverage which will not cause erosion or damage to finished surfaces. Water the area sufficiently to penetrate planting bed to a depth of four (4) inches.

PART 3 - EXECUTION

3.1 PREPARATION OF PLANTING PITS AND BEDS

- A. Plant Pits: Refer to the Perennial Planting Details in the Construction Documents.
- B. Remove all sticks, stones, roots, and other objectionable materials larger than one inch in diameter following tilling operations.

3.2 LAYOUT

A. Plant material shall be laid out according to the Construction Documents. If Contractor does not follow the intended placement and spacing of the plant materials it will be at the Contractors cost to relocate said plants.

3.3 PLANTING

- A. Setting Plants: Handle container-grown plants by container. Set plants and hold in plumb position until sufficient pit backfill has been firmly placed around roots or ball. Set plants in relation to surrounding grade so that they are even with the depth at which they were grown in nursery, collecting field, or container.
- B. Place fertilizer prior to backfilling.
- C. Contractor shall refer to the Planting Details located on the Construction Documents for additional planting instructions.

END OF SECTION 32 93 00

SECTION 33 05 00 - SITE UTILITY PIPING

PART 1 - GENERAL

1.1 WORK INCLUDES:

- A. Underground utility piping from 5' outside building structures as identified on the site plans.
- B. Sanitary sewer piping materials.
- C. Storm sewer piping materials.
- D. Water piping materials.
- E. Materials shall be neatly stored on site. Excavated material shall be neatly stockpiled if not immediately removed from the site. Streets, driveways, and sidewalks shall be kept clear and open.

1.2 REFERENCE STANDARDS AND SPECIFICATIONS:

- A. Storm Drainage System Specification.
- B. Sanitary Sewer System Specification.
- C. Water Distribution System Specification.
- D. Site Earthwork Specification.
- E. Site Landscaping.

PART 2 - SEWER PIPING – See site drawings for allowable pipe materials.

2.1 FLEXIBLE GRAVITY SEWER PIPE:

- A. Install piping per the flexible pipe utility trench detail on the site drawings for bedding and backfill requirements.
 - 1. ASTM D 3034-97 SDR-35 PVC 15" and smaller.
 - a. Provide slip-on joints with rubber gasket or mechanical joints.
 - b. Join pipe with gaskets according to ASTM F 477 for elastomeric seals.
 - c. Install according to ASTM D 2321.
 - 2. ASTM F 405 High Density Polyethylene (HDPE) for pipe 10" and smaller

- a. Join pipe with gaskets according to ASTM F 477 elastomeric seals.
- b. Install according to ASTM D 2321.
- 3. ASTM F 667 High Density Polyethylene (HDPE) for pipe larger than 10"
 - a. Join pipe with gaskets according to ASTM F 477 elastomeric seals.
 - b. Install according to ASTM D 2321.
- 4. ASTM D 2751 SDR-(23.5,35,42) Acrylonitrile-Butadiene-Styrene (ABS) Sewer Pipe with bell and spigot style solvent sealed end joints.
 - a. Install according to ASTM D 2321.
- 5. ASTM D 2729 Polyvinylchloride (PVC) sewer pipe with bell and spigot style solvent sealed end joints.
 - a. Install according to ASTM D 2321.

2.2 RIGID GRAVITY SEWER PIPE:

- A. Install piping per the rigid pipe utility trench detail on the site drawings for bedding and backfill requirements.
 - 1. ASTM C 76, Class III, Wall B, Reinforced Concrete Pipe
 - a. Slip-on joints with rubber compression gasket or mechanical joints
 - b. Round Pipe and Fittings: ASTM C 443, rubber gaskets.
 - c. Elliptical Pipe: ASTM C 877, Type I, Sealing Bands.
 - d. Arch Pipe: ASTM C 877, Type I, Sealing Bands. Install according to ACPA's "Concrete Pipe Installation Manual."

2.3 SUBDRAINAGE PIPING

- A. ASTM F 405 Corrugated, perforated Polyethylene Pipe and fittings with coupled joints.
- B. Join PE pipe and fittings with couplings for soiltight joints according to AASHTO's "Standard Specifications for Highway Bridges," Division II, Section 26.4.2.4, "Joint Properties"; or according to ASTM D 2321 and the Corrugated Pipe Associations "Recommendation Installation Practices for Corrugated Polyethylene Pipe and Fittings".

2.4 STORM DRAINAGE FITTINGS

- A. Storm drainage fittings shall be of the same material and classification as the main line. Provide adapters as necessary to adjust from the main line fitting to the branch line material.
- B. Inserta-Tees for branch lines are acceptable provided:
 - 1. The main line is 12" nominal pipe size or larger.
 - 2. The branch line extends from the main at no greater than 45 degree slope from horizontal.
 - 3. The protrusion into the main line does not exceed 1".

PART 3 - WATER DISTRIBUTION PIPING – See site drawings for allowable pipe materials.

- 3.1 DUCTILE-IRON PIPE AND FITTINGS:
 - A. Mechanical joint and push on joint pipe conforming with AWWA C151 and Pressure Class 350.
 - B. Mechanical joint and push on joint pipe fittings conforming with AWWA C110 or AWWA C153.
 - C. Glands with rubber gaskets and steel bolts conforming with AWWA C111/A21.11.
 - D. Install according to AWWA C600 and AWWA M41.
 - E. Polyethylene Encasement: ASTM A 674 or AWWA C105/A21.5, PE film, 0.008-inch minimum thickness, tube or sheet.
 - F. Cement mortar lining according to AWWA C104/A21.4.
 - G. Asphaltic coating according to AWWA C151 / AWWA C110 / AWWA C153 as applicable.
 - H. Pressure and leak test ductile-iron piping according to AWWA C600-99.
 - I. Provide testing only after all restraints have hardened.

3.2 PVC PIPE AND FITTINGS

- A. AWWA pressure class 150 C900 PVC, SDR 18 with push on joints according to ASTM D 3139 and socket fittings. The material shall conform to ASTM D 1784, Class 12454-B.
- B. Gasketed Joints: Use joining materials according to AWWA C900. Construct joints with elastomeric seals and lubricant according to ASTM D 2774 and ASTM D 3139 and pipe manufacturer's written instructions.
- C. Install according to AWWA M23 and ASTM F 645.

- D. Pressure and leak test plastic piping according to AWWA C605-94.
- E. Provide testing only after all restraints have hardened.

3.3 COPPER PIPE AND FITTINGS:

- A. Soft copper tube Type K with wrought-copper fittings conforming with ASTM B 88.
- B. Install according to CDA's "Copper Tube Handbook."
- C. Cast copper fittings according to ASME B16.18 or wrought copper fittings according to ASME A5.8 with BCuP silver braze.
- D. Provide compression joints

END OF SECTION 33 05 00

SECTION 33 11 16 – SITE WATER DISTRIBUTION

PART 1 - GENERAL

1.1 WORK INCLUDES:

A. Domestic water and fire protection facilities from the Public main to 5' outside building structures as shown on the Site Plans.

1.2 REFERENCE STANDARDS AND SPECIFICATIONS:

- A. The Indiana Department of Environmental Management rules and regulations.
- B. Comply with requirements of utility company supplying water. Include tapping of water mains and backflow prevention.
- C. Terms and conditions of construction as required by the Contractor's permit with the controlling agency. When conditions of the permit conflict with proposed work, the contractor shall notify the Engineer for correction prior to installation. Any non-compliant work performed by the Contractor shall be at the Contractor's expense.
- D. Site Earthwork specification for excavation and backfill requirements.
- E. Comply with ASTM F 645 for selection, design, and installation of thermoplastic water piping.
- F. NFPA Compliance: Comply with NFPA 24 for materials, installations, tests, flushing, and valve and hydrant supervision for fire-service-main piping for fire suppression.
- G. Control of Site Work Specification.

1.3 DELIVERABLES:

- A. Product Data for the following: piping, fittings, valves and accessories, water meters and accessories, fire hydrants, blow off hydrants, post indicator valves and accessories.
- B. Record Drawings: Contractor shall provide a marked-up set of drawings to the owner. Include size, material, depth of cover, location, and elevation of all improvements within the contract documents. Include details of underground structures and connections. Identify any items that deviate from the contract documents including but not limited to: underground utilities, finish grades, substitutions if approved, detail modification, etc.
- C. Progress Reports: Soil conditions encountered, work completed, etc.
- D. Passing test reports for the entire water distribution system.

1.4 CONTROL OF WORK:

- A. Clean any debris that may accumulate within the water distribution system as a result of construction operations, including new and existing water piping and structures. Flush piping as required to purge the piping system.
- B. Cap the end of exposed piping during installation to minimize infiltration of material into the piping system.
- C. Inspect the distribution system and replace defective piping and structures using new materials, and repeat inspections until defects are within allowances specified. Re-inspect and repeat procedure until results meet specifications.
- D. Do not enclose, cover, or put the water distribution system into service before final inspection and approval by the local utility owner.
- E. Schedule tests and inspections with the utility owner as required under the conditions of the permit, and this section. The water distribution system will not be accepted or considered complete until all improvements pass the testing requirements of the local utility owner and a copy of all passing tests are provided to the Owner's Agent.
- F. Protect piping from damage. Do not store PVC piping and fittings in direct sunlight.

PART 2 - PRODUCTS

2.1 WATER DISTRIBUTION PIPING:

- A. See site plans for allowable pipe materials.
- B. Install piping from the water service connection point to 5' outside the face of building. Connect to the building water system of sizes and in locations indicated. Site contractor shall be responsible for making the final connection to the building system, including any drop piping and fittings required to match invert elevations.
- C. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for using lubricants and other installation requirements. Maintain a swab in line, and pull past each joint as it is completed.
- D. Use proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.
- E. Bury piping with depth of cover over top at least 60 inches.
- F. Protect stored piping, fittings, and specialties from moisture and dirt, and elevate above grade.

2.2 VALVES:

A. Resilient-Seated gate valve, ductile-iron body, bonnet and gate; resilient seats, bronze stem and stem nut, with mechanical joints and conforming to AWWA C509. Provide interior coating according to AWWA C550. All valves and fittings shall have a minimum working pressure of 200 psig. Install valve nut extension if valve is installed deeper than 60" cover.

2.3 VALVE BOXES:

A. Comply with AWWA M44 for cast-iron valve boxes. Include top section, adjustable extension of length required for depth of burial of valve, plug with lettering "WATER," bottom section with base of size to fit over valve, and approximately 5-inch- diameter barrel. Install valve box and valve nut extensions if valve is installed deeper than 60" cover.

2.4 ANCHORAGE INSTALLATION

- A. Install underground piping with restrained joints at horizontal and vertical changes in direction. Use restrained-joint piping, thrust blocks, anchors, tie-rods and clamps, and other supports. For water lines 12" and smaller, restrain joints and fittings in accordance with the manufacturer's recommended restraint lengths or the controlling municipality specifications, whichever is more restrictive. Submit calculations for required restraint length to Engineer for water lines larger than 12".
- B. Install anchorages for tees, plugs and caps, bends, crosses, valves, and hydrant branches.
- C. Provide anchorage for Ductile-Iron, Water-Service Piping according to AWWA C600.
- D. Provide anchorage for PVC Water-Service Piping according to AWWA M23.
- E. Apply full coat of asphalt or other acceptable corrosion-resistant material to surfaces of installed ferrous anchorage devices.

2.5 INDICATOR POSTS:

A. Use UL/FM, nonrising-stem gate valves for installation with indicator posts, and provide electronic monitoring switch on post indicator. Coordinate work with building fire protection drawings

2.6 WATER METERS:

A. Contractor shall pay all required fees, and Install according to the Utility Owner's requirements.

2.7 IDENTIFICATION

- A. Install continuous underground detectable warning tape for all plastic pipe during backfilling of trench for underground water-service piping. Locate below finished grade, directly over piping. In addition, attach a continuous green sheathed solid conductor copper/copper clad steel wire line (minimum #12 AWG) directly to the plastic pipe.
- B. Connect any break in the conductor line before construction with an electrical clamp, or solder, and coat the connection with a rubber or plastic insulator to maintain the integrity of the connection from corrosion. Clamp connections must be made of brass or copper and of the butt end type with wires secured by compression. Soldered connections must be made by tight spiral winding of each wire around the other with a finished length minimum of 3 inches overlap.
- C. Test conductors for continuity. Conductors shall be installed to ground level at each hydrant and valve box.

2.8 LIVE TAP 3" AND LARGER:

A. Tap existing water main according to requirements of water utility company and according to MSS SP-60. Provide gate valve and valve box as shown on the site drawings.

PART 3 - TESTING AND DISINFECTION

3.1 CLEANING:

- A. Clean and disinfect all public and private water distribution piping according to the Utility Owner requirements, and according to AWWA C651-99. Provide temporary testing connections as required by the permitting authority and to effectively complete disinfection requirements.
- B. Fill the distribution system with a water and chlorine solution containing at least 50 ppm of chlorine. isolate and allow to stand for 24 hours.
- C. Drain system or part of system of previous solution and refill with water/chlorine solution containing at least 200 ppm of chlorine; isolate and allow to stand as required.
- D. After standing time, flush system with clean, potable water until no chlorine remains in water coming from system.
- E. Submit water samples in sterile bottles to authorities having jurisdiction.
- F. Prepare reports of purging and disinfecting activities.

3.2 WATER DISTRIBUTION TESTING:

A. Provide testing as required by the Indiana Department of Environmental Management, Indiana State Department of Health, and water utility Owner. In the absence of published standards, see site utility piping section for specific testing requirements.

END OF SECTION 33 11 16

SECTION 33 31 14 - SANITARY SEWER SYSTEM

PART 1 - GENERAL

1.1 WORK INCLUDES:

A. Sanitary sewerage 5' outside building structures as shown on the Site Plans.

1.2 REFERENCE STANDARDS AND SPECIFICATIONS:

- A. The Indiana Department of Environmental Management rules and regulations.
- B. The Utility Owner Standards and Specifications.
- C. Terms and conditions of construction as required by the Contractor's permit with the controlling agency. When conditions of the permit conflict with proposed work, the contractor shall notify the Engineer for correction prior to installation. Any non-compliant work performed by the Contractor shall be at the Contractor's expense.
- D. Site Earthwork specification for excavation and backfill requirements.
- E. Control of Site Work Specification.

1.3 DELIVERABLES:

- A. Submittals for: piping, fittings, precast manholes, casting frames and covers.
- B. Record Drawings: Include size, material, depth of cover, location, and elevation of all improvements within the contract documents. Include details of underground structures and connections.

1.4 CONTROL OF WORK:

- A. Clean any debris that may accumulate within the sanitary sewer system as a result of construction operations, including new and existing sewer piping and structures. Flush piping as required to purge the piping system.
- B. Cap the end of exposed piping during installation to minimize infiltration of material into the piping system.
- C. Inspect interior of piping to determine whether line displacement or other damage has occurred throughout the construction process. Inspect after approximately 24 inches of backfill is in place, and again at completion of Project.

- D. Replace defective piping and structures using new materials, and repeat inspections until defects are within allowances specified. Re-inspect and repeat procedure until results meet specifications.
- E. Do not enclose, cover, or put the sanitary sewer into service before final inspection and approval by the local utility owner.
- F. Schedule tests and inspections with the utility owner as required under the conditions of the permit, and this section. The sanitary sewer system will not be accepted or considered complete until all improvements pass the testing requirements of the local utility owner and a copy of all passing tests are provided to the Owner's Agent.
- G. Protect piping from damage. Do not store PVC piping and fittings in direct sunlight.

PART 2 - PRODUCTS

- 2.1 GRAVITY PIPE: See the site utility piping specification for material specifications, and the site drawings for allowable pipe materials.
 - A. Install piping from the sewer outlet point to 5' outside the face of building according to the site drawings. The site contractor shall be responsible for making the final connection to the building sewer, including any drop piping required to match invert elevations.
 - B. Use jointing materials and methods defined in the site utility piping specification.

2.2 PRECAST DRAINAGE STRUCTURES:

- A. All structures shall be precast concrete according to ASTM C 478. Provide preformed flexible joint sealant per ASTM C 990 or rubber gasket joints per ASTM C 443 and ASTM C 891.
- B. Grade Rings: Set structure depth to include two 6" thick reinforced concrete rings that are compatible with the specified castings.
- C. Steps: Include steps that are placed in alignment with the access hole opening, and extend from the bottom of the structure to the top of the structure. Place each step at 12" intervals and provide a slip resistant surface on each step.
- D. Provide resilient boot according to ASTM C 923 to connect the sewer piping to the precast drainage structure.
- E. Concrete for Channels and Benches: Portland cement design mix, 3000 psi minimum, with 0.45 maximum water-cementitious materials ratio.
- F. See Site Earthwork specification for backfill requirements.

2.3 CLEANOUTS:

- A. Install piping so cleanouts open in direction of flow in sewer pipe. Set cleanout frames and covers as shown on the site drawings.
- 2.4 TAP CONNECTIONS:
 - A. Connect to existing sewer main according to the conditions of the sewer tapping permit.

PART 3 - INSTALLATION

- 3.1 GRAVITY PIPE TESTING:
 - A. Test to be performed 30 days after installation.
 - B. Flexible piping shall allow passage of a cylinder that is no smaller than 95% of the pipe inside diameter.
 - C. Any piping that is damaged shall be removed and re-installed before approval.
 - D. Air test plastic pipe according to ASTM F1417-92: "Standard Test Method for Installation Acceptance of plastic gravity sewer lines using Low-Pressure Air".
 - E. Test PVC Piping according to AWWA M23, "Testing and Maintenance" Chapter.

3.2 MANHOLE STRUCTURE TESTING:

A. Perform vacuum test on all manholes according to ASTM C1244-93 "Standard Test Method for Concrete Sewer Manholes by the Negative Air Pressure Test".

END OF SECTION 33 31 14

SECTION 33 41 00 - STORM DRAINAGE SYSTEM

PART 1 - GENERAL

1.1 WORK INCLUDES:

- A. Storm drainage 5' outside building structures as shown on the Site Plans.
- B. Subdrainage.

1.2 REFERENCE STANDARDS AND SPECIFICATIONS:

- A. Local storm water review agency standards and specifications.
- B. Terms and conditions of construction as required by the Contractor's permit with the controlling agency. When conditions of the permit conflict with proposed work, the contractor shall notify the Engineer for correction prior to installation. Any non-compliant work performed by the Contractor shall be at the Contractor's expense.
- C. Site Earthwork specification for excavation and backfill requirements.
- D. Control of Site Work Specification.

1.3 DELIVERABLES:

- A. Product Data for the following: piping, fittings, cleanouts, precast concrete manholes, and casting frames and covers.
- B. Record Drawings: Include size, material, depth of cover, location, and elevation of all improvements within the contract documents. Include details of underground structures and connections.
- C. Progress Reports: Soil conditions encountered, work completed, etc.
- D. Passing test reports for the entire storm sewer system.
- E. Geotextile fabric data for subdrainage.

1.4 CONTROL OF WORK:

A. Clean any debris that may accumulate within the storm drainage system as a result of construction operations, including new and existing water piping and structures. Flush piping as required to purge the piping system.

- B. Cap the end of exposed piping during installation to minimize infiltration of material into the piping system.
- C. Inspect interior of piping to determine whether line displacement or other damage has occurred throughout the construction process. Inspect after approximately 24 inches of backfill is in place, and again at completion of Project.
- D. Replace defective piping and structures using new materials, and repeat inspections until defects are within allowances specified. Re-inspect and repeat procedure until results meet specifications.
- E. Do not enclose, cover, or put the storm sewer into service before final inspection and approval by the local utility owner.
- F. Schedule tests and inspections with the utility owner as required under the conditions of the permit, and this section. The storm drainage system will not be accepted or considered complete until all improvements pass the testing requirements of the local utility owner and a copy of all passing tests are provided to the Owner's Agent.
- G. Protect piping from damage. Do not store PVC piping and fittings in direct sunlight.

PART 2 - PRODUCTS

2.1 GRAVITY PIPE:

- A. See the site utility piping specification for material specifications, and the site drawings for allowable pipe materials.
- B. Install piping from the sewer outlet point to 5' outside the face of building according to the site drawings. The site contractor shall be responsible for making the final connection to the building sewer, including any drop piping required to match invert elevations.
- C. Use jointing materials and methods defined in the site utility piping specification.

2.2 SUBDRAINAGE:

- A. See the site drawings for allowable pipe materials and the utility piping specification for jointing methods.
- B. Lay perforated pipe with perforations down.
- C. Drainage fabric: Polypropylene nonwoven geotextile filter that will allow a hydraulic flow rate of 110 gallon per minute per square foot when tested according to ASTM D 4491.

2.3 DRAINAGE FILL:

A. Washed, evenly graded mixture of crushed stone, or crushed or uncrushed gravel, ASTM D 448, coarse aggregate, Size No. 57, with 100 percent passing 1-1/2-inch sieve and not more than 5 percent passing No. 8 sieve.

2.4 PRECAST DRAINAGE STRUCTURES:

- A. All structures shall be precast concrete according to ASTM C 478. Provide preformed flexible joint sealants per ASTM C 990 or rubber gasket joints per ASTM C 443 and ASTM C 891.
- B. Grade Rings: Set structure depth to include two 6" thick reinforced concrete rings that are compatible with the specified castings.
- C. Steps: Include steps that are placed in alignment with the access hole opening, and extend from the bottom of the structure to the top of the structure. Place each step at 12" intervals and provide a slip resistant surface on each step.
- D. Concrete for Channels and Benches: Portland cement design mix, 3000 psi minimum, with 0.45 maximum water-cementitious materials ratio.
- E. See Site Earthwork specification for backfill requirements.

2.5 CLEANOUTS:

- A. Install piping so cleanouts open in direction of flow in sewer pipe. Set cleanout frames and covers as shown on drawings.
- 2.6 TAP CONNECTIONS:
 - A. Connect to existing sewer main according to the conditions of the sewer tapping permit.

END OF SECTION 33 41 00